Abstract

This paper features the dynamic modelling of a indigenously developed 3-axis SCARA robot arm which is used for doing successful robotic manipulation task in the laboratory. A 3- axis stationary robotic arm was developed in the laboratory. For this robotic system, a in-depth dynamic model of the system was carried out to study the dynamics of the designed and fabricated system. The dynamic concept was also implemented on the designed robot successfully.
References

- Klafter, Thomas and Negin, Robotic Engineering, PHI, New Delhi.
- Fu, Gonzalez and Lee, Robotics: Control, Sensing, Vision and Intelligence, McGraw Hill.

 - Crane, Joseph Duffy, Kinematic Analysis of Robotic Manipulators, Cambridge Press, UK.
 - P G Ranky and C Y Ho, Robot Modeling, control and applications, IFS publishers, Springer, UK.
 - Asada, H., and J.E. Slotine, Robot Dynamics & Control, Wiley, NY.
 - Janakiraman, Robotics and Image Processing, Tata McGraw Hill.
 - Tsuneo Yoshikawa, Foundations of Robotics: Analysis and Control, PHI.
 - Dr. Jain and Dr. Aggarwal, Robotics: Principles & Practice, Khanna Publishers, Delhi.
 - Lorenzo and Siciliano, Modeling and Control of Robotic Manipulators, McGraw Hill.

- Carl D Crane and Joseph Duffy, Kinematic Analysis of Robot Manipulators, Cambridge Press, UK.
- C Y Ho and Jen Sriwattamathamma, Robotic Kinematics … Symbolic Automatic and Numeric Synthesis, Alex Publishing Corp, New Jersey.
- Francis N Nagy, Engineering Foundations of Robotics, Andreas Siegler, Prentice Hall.
Dynamics of compliant vertical axis robots

- Lee C S G, Robotics, Kinematics and Dynamics.

Index Terms

Computer Science

Computational Intelligence

Keywords

SCARA Dynamic model Jacobean Euler- Lagrange