Abstract

FPGA implementation of Advanced Encryption Algorithm for 128 bits is presented in this paper for high speed applications. It explores pipelining and sub-pipelining to gain speed optimization without increasing area considerably. It concentrates on placement of the pipelining registers rather than just increasing its number to gain speed. An encryptor with 8 stages of sub-pipelining for each round unit using the proposed architecture gives a throughput of 24.33 Gbps on Xilinx XCV1000 e-8 bg560 device and that of 29.99 Gbps on XC3S4000-5fg676 device.
FIPS 197, "Advanced Encryption Standard (AES)", November 26, 2001

K. Gaj and P. Chodowiec, "Comparison of the hardware performance of the AES candidates using reconfigurable hardware.", Presented at Proc. 3rd AES Conf. (AES3).

Edwin NC Mui, "Practical Implementation of Rijndael S-Box Using Combinational Logic.",

Marian Cretu1 and Cristian-Gabriel Apostol, "A Modified Version of Rijndael Algorithm Implemented to Analyze the Cyphertexts Correlation for Switched S-Boxes.", IEEE conference on Communication (COMM), Bucharest, 2012
High Speed Architecture Implementation of AES using FPGA

Index Terms

Computer Science
Information Sciences

Keywords

Rijndael Aes Pipelining Sub-pipelining S-box.