Abstract

Integral Projections based face tracking algorithm provides high accuracy and computational efficiency to accurately track human faces. However, the inherent complexity of having three dimensions and the usage of projection model with each dimension has posed a challenge to deploy on resource constrained handheld devices. Motivated by these observations, we
propose a multi-threaded architecture on Android to address this issue. First, we discuss few related works to investigate and analyze the Integral Projection face tracking algorithm and detail the constraints associated to identify face tracking accurately. Second, we discuss few characteristics of android architecture and detail constraints associated with middleware sub-system to cater face tracking efficiently. Consequently, we describe the proposed architecture and the rationale of functionality based module classification to address inherent challenges like reducing false positive rate on resource constrained devices. In particular, we point out the benefits of the Face Algorithm Agent to ensure smooth and swift portability onto different flavors of android. To validate our approach, trial experiments were performed using the said architecture on Zoom2 hardware platform based on Android. Experimental results lead us to conclude the architecture is efficient at reducing the false positive rates significantly. Finally, future research directions based on the current architecture results are pointed out.

Reference

1. Refining Face Tracking with Integral Projections Gin´es Garc´ıa Mateos Dept. de Inform´atica y Sistemas, Universidad de Murcia 30.170 Espinardo, Murcia (Spain).
http://www.intel.com/research/mrl/research/opencv/

15. Kaijian Xu, Manli Zhu, Daqing Zhang, Tao Gu: “Context-Aware Content Filtering &
Presentation for Pervasive & Mobile Information Systems”; Proceedings of the 1st international
conference on Ambient media and systems, Quebec, Canada, 2008.

Index Terms

Computer Science Pattern Recognition

Key words

Face Tracking Android

Architecture

QoE