Certain Investigations on Power Performance in Nanoscale CMOS Digital Circuits with Low Leakage Design Techniques

IJCA Proceedings on International Conference on Innovations in Information, Embedded and Communication Systems

© 2014 by IJCA Journal

ICIECS - Number 4

Year of Publication: 2014

Authors:

Greeshma. V

R. Udaiya Kumar

Abstract

In this paper, it is attempted to analyze the power performances of few CMOS digital circuits such as full adder, multiplexer and SRAM cell with the inclusion and redesign of ultra low leakage (ULL) techniques. The basic principle behind this ULL is based on a pair of source-connected N-MOS and P-MOS transistors, automatically biasing the stand-by gate-to source voltage of N-MOSFET at negative and P-MOSFET at a positive voltage levels, thereby pushing the leakage current towards its physical limits. Virtual ground concept is also introduced to reduce the power dissipation further. The circuits are designed with DSCH schematic design tool using CMOS 90nm technology and simulations are performed by using...
Level3 model files. The final layout of all circuits is generated using microwind. From the obtained results, a significant amount of power reduction is noticed without other functional performances such as area and speed are getting affected.

References

- Denis Flandre, Olivier Bulteel, Geoffroy Gosset, Bertrand Rue and David Bol, "Disruptive ultra-low-leakage design techniques for ultra-low-power mixed-signal Microsystems;"
- G. Gosset, B. Rue, D. Flandre, Very High Efficiency 13.56MHz RFID Input Stage Voltage Multipliers Based on Ultra Low Power MOS diodes. IEEE Int. Conf. on RFID, April 16-17, 2008, Las Vegas, Nevada.

Index Terms

Computer Science Networks
Keywords
Power Optimization Ultra Low Leakage Virtual Ground Cmos Digital Circuits Full Adder Multiplexer Sram Cell