Abstract

This paper proposes a high-performance transformer less single-stage high step-up ac–dc matrix converter using a Cockcroft–Walton (CW) voltage multiplier. Employing an eight unidirectional-switch to form four bi-directional switch matrix converters between the ac source and CW circuit, the proposed converter provides high quality of line conditions, adjustable output voltage, and low output ripple. The matrix converter is operated with two independent frequencies. One of which is associated with power factor correction (PFC) control, and the other is used to set the output frequency of the matrix converter. Moreover, the relationship among the latter frequency, line frequency, and output ripple will be discussed. A commercial
Simulation and Implementation of Single-Phase Single-Stage High Step-Up AC–DC Matrix Converter based on Cockcroft–Walton Voltage Multiplier
class IC associating with a pre-programmed complex programmable logic device is built as
the system controller. The operation principle, control strategy, and design considerations of
the proposed and modified converter are all detailed in this paper. The simulation results
demonstrate the high performance of the proposed and modified converter and the validity for
high step-up ac–dc applications.

References

- Cho, J. G. , and Cho, G. H, "Soft-switched Matrix Converter for High Frequency
- Sobczyk, T., "Numerical Study of Control Strategies for Frequency Conversion
with a Matrix Converter," Proceedings of Conference on Power Electronics and Motion
Control, Warsaw, Poland, 1994, pp. 497-502.
- P. W. Wheeler, J. Rodriguez, J. C. Clare, L. Empringham, and A. Weinstein,
49, no. 2, pp. 276-287, April 2002.
- S. Kim, S.-K. Sul, and T. A. Lipo, "AC/AC power conversion based on matrix
converter topology with unidirectional switches,"
- M. D. Bellar, E. H. Watanabe, and A. C. Mesquita, "Analysis of the dynamic
- I. C. Kobougias and E. C. Tatakis, "Optimal design of a half-wave
Cockcroft–Walton voltage multiplier with minimum total capacitance," IEEE Trans. Power
- M. M. Weiner, "Analysis of Cockcroft–Walton voltagemultipliers with an arbitrary
- J. Tanaka and I. Yuzurihara, "The high frequency drive of a new multistage
- S. M. Sbenaty and C. A. Ventrice, "High voltage DC shifted RF switchmode
power supply system design for gas lasers excitation," in Proc. Appl. Power Electron.
- P. G. Maranesi, F. Raina, M. Riva, and G. Volpi, "Accurate and nimble forecast
539–543.
- F. Belloni, P. Maranesi, and M. Riva, "Parameters optimization for improved
- S. D. Johnson, A. F. Witulski, and R. W. Erickson, "Comparison of resonant
- E. Chu, L. Gamage, M. Ishitobi, E. Hiraki, and M. Nakaoka, "Improved transient
and steady-state performance of series resonant ZCS highfrequency inverter-coupled voltage
multiplier converter with dual mode PFM control scheme," J. Electr. Eng. Jpn., vol. 149,
Simulation and Implementation of Single-Phase Single-Stage High Step-Up AC–DC Matrix Converter based on Cockcroft–Walton Voltage Multiplier

- Electromagnetic Compatibility (EMC)-Part 3: Limits-Section 2: Limits for Harmonic Current Emissions (Equipment Input Current