Abstract

Image compression is the science of reducing the size of image file in bytes by reducing the redundancy between pixels in an image without degrading the quality of image so that it can store more images in a given amount of disk or memory space and also it tends to reduces the time required to send the images over the network. Many hardware efficient techniques exist, inspired from it this paper, propose an image compression technique based on the pixel-wise fidelity and its FPGA implementation. The proposed method is used to reduce the bit
rate of the pixels for better image compression by using angular transformation. Here propose an hardware efficient FPGA architecture using angular domain concept based on CORDIC algorithm is presented. In this paper, the architecture is first simulated in MATLAB for calculating PSNR, MMSE and compression ratio and then it simulated and synthesized using Xilinx ISE tool and verify the parameters such as area, power and delay required for compressing the image with visual appearance of the output compressed image.

References

June-2011.
 - Kadono, S, Tahara O and Okamoto N (2001) "Encoding of color still pictures
 wavelet transform and vector quantization", Canadian Conference on Electrical
 - B. Krill, A. Ahmad, A. Amira, H. Rabah, "An efficient FPGA-based dynamic partial
 reconfiguration design flow and environment for image and signal processing IP cores",
 - Kalaiyarasi K, Deepika S et al, "Fast DCT Computation Using Cordic Algorithm
 for Image Processing Application", International Journal for Research and Development in

Index Terms
 Computer Science Algorithms

Keywords
 Image Compression Angular Transformation Vhdl Fpga Cordic Bit Plane Slicing
 Mmse
 Psnr
 Rtl.