Abstract

A band pass filter based UWB which uses cascaded configuration of microstrip couplings is designed. Existing systems are not concentrating on the UWB design employing sufficient spacing so that they can reduce the unwanted signal reception. There is a need of a technique that enables the design of a planar UWB band pass microstrip filter with less than 1-dB insertion loss across its passband from 3.1 to 10.6 GHz, a wide upper stopband so that a reasonable spacing between the coupled lines will be achieved. We will be showing the performance in terms of E-H plane variation, beam pattern, S-parameter model and antenna calculated dimensions. The entire antenna is designed based on 2.6 GHz. The parameters of the
antenna are calculated by using MATLAB in this project.

References

- Cheng-Yuan Hung, Student Member, Min-Hang Weng, Member, IEEE, Ru-Yuan Yang, Student Member, IEEE and Yan-Kuin Su, Fellow, "Design of the Compact Parallel Coupled Wideband Bandpass Filter With Very High Selectivity and Wide Stopband"; IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 17, NO. 7, JULY 2007.
- Binyan Yao, Yonggang Zhou, Qunsheng Cao, and Yinchao Chen, Member, "Compact UWB Bandpass Filter With Improved Upper-Stopband Performance"; IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, VOL. 19, NO. 1, JANUARY 2009.
- Jen-Tsai Kuo, Senior Member, Meshon Jiang, and Hsien-Jen Chang, "Design of Parallel-Coupled Microstrip Filters With Suppression of Spurious Resonances Using Substrate Suspension"; IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 52, NO. 1, JANUARY 2004.
- Kaijun Song, Member and QuanXue, Senior Member, "Inductance-Loaded Y-Shaped Resonator and Applications to Filters"; IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 58, NO. 4, APRIL 2010.

Index Terms

Computer Science
Wireless Communications
Keywords
Keywords Are Your Own Designated Keywords Which Can Be Used For Easy Location Of The Manuscript Using Any Search Engines