Abstract

Face Recognition is rapidly changing and challenging area from last few decades. It has number of intra-subject variations. Aging is one of the major issues among all intra-subject variations of face recognition. So, Age Invariant Face Recognition is one of the very challenging areas as age cause variations on face. The various approaches related to age invariant face recognition and nonlinear dimensionality reduction was studied earlier in detail. In this paper, the implementation of first module, of one of the recent approach named Nonlinear Topological Component Analysis on Age Invariant Face Recognition is discussed in detail. In
this module the facial features are automatically extracted from facial frontal images. The extracted feature points are placed in latent space which is labeled as ?-encoded face. Thus each point in ?-encoded face is plotted to form ?-shape Tetrahedron

Referen
ces

- Axel Wismuller, Michel Verleysen, Michael Aupetit, and John A. Lee, "Recent Advance in Nonlinear Dimensionality Reduction, Manifold and Topological Learning", Computational Intelligence and Machine Learning, Bruges, ESANN, April 2010.
- Jyothi S. Nayak and Indiramma M, "Stable Local feature based Age Invariant Face Recognition", IJAEM, Volume 2, Issue 12, December 2013.
- Yuan Wang, Yunde Jia, Changbo Hu and Matthew Turk, "Face Recognition based on Kernel Radial Basis Function Networks", 2003.
- Bouchaffra D. , "Topological Dynamic Bayesian Networks", IEEE Trans. , 20th
International Conference on patterns Recognition, 2010.

Index Terms

Computer Science
Applied Mathematics

Keywords

Nonlinear Topological Component Analysis, \(\alpha\)-encoded Face, \(\alpha\)-shape Tetrahedron.