Abstract

Viscoelastic dampers are considered to be better than most of the passive energy dissipation devices. Researches done on the improvement of its performance for analyzing structures has
always been in vogue. The significant change in the response of the structures to make it resistant to earthquake and wind forces is the main idea behind using such devices. A comparative analysis of a G+44 RCC structure has been carried out in this paper using Viscoelastic dampers. Dynamic behaviour of the structure for wind and earthquake loading with respect to response spectrum analysis is carried out. Changes in the responses of displacement, velocity, acceleration and drift for the damped structure are demonstrated illustrating the efficiency of dampers.

References

- Alessandra Aprile; Jose A. Inaudi/ and James M. Kelly, "evolutionary model of viscoelastic dampers for structural applications"); journal of engineering mechanics, pp 551-560, 1990
- C. S. Tsai, 1 Associate Member, ASCE, and H. H. Le, "applications of viscoelastic dampers to high-rise buildings"); Journal of Structural Engineering, Vol. 119, No. 4, pp1222-1233, 1993.
- Sheng-Yung Hsu1 and Apostolos Faltitis, "seismic analysis design of frames with viscoelastic connections"); Journal of structural engineering, vol 118 no 9, pp 2459-2474.
Comparative Analysis of a Multistorey Building with and without Damper

1993.
- Xiao HUANG1,2, Hong-ping Zhu; Optimal arrangement of viscoelastic dampers for seismic control of adjacent shear-type structures; Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering) pp 47-60, 2012.
- X. M. Tan, J. M. Ko, E. H. Fang and J. R. Qiar; Vibration control with viscoelastic dampers in a high-rise building; Department of Civil & Structural Engineering The Hong Kong Polytechnic University Hung Horn, Kowloon Hong Kong. pp 935-941.
- Design guidelines by holmes consulting group.

Index Terms

Computer Science
Applied Sciences

Keywords
Viscoelastic Dampers Energy Dissipation Device.