Abstract

The use of supplementary cementitious materials is well accepted because of the several improvements possible in the concrete mix, for overall economy. The present work is a support
Review on Ground Granulated Blast-Furnace Slag as a Supplementary Cementitious Material

to use the waste product from steel industry is helpful in cement which also helps to reduce the carbon footprint. In recent years Blast Furnace Slag when replaced with cement has emerged as a major alternative to conventional concrete and has rapidly gain the concrete industry's attention due to its cement savings, energy savings, cost savings, socio-economic and environmental benefits. The present study reports the results of an experimental study, conducted to evaluate the strengths and strength efficiency factors of hardened concrete, by partially replacing the cement by various percentages of ground granulated blast furnace slag. The optimum GGBS replacement as cementitious material is characterized by high compressive strength, low heat of hydration, resistance to chemical attack, better workability, good durability and cost-effective. In this work we are going to study the effects of GGBS on the compressive strength of the cement concrete by replacing cement with GGBS by 10%, 15%, 20%, and 40%. This project work also includes the benefits of using GGBS and its effects on the cement and concrete properties and its durability, and its sustainability.

References

- ASTM C 989-940, Standard specification for ground granulated blast furnace slag for use in concrete and mortars.
- Use of GGBS Concrete Mixes for Aggressive Infrastructural applications, UCD School of Architecture, Landscape and Civil Engineering Dublin. Project Code IP/2008/0540
- K. Ganesh Babu and V. Sree Rama Kuma, Efficiency of GGBS in concrete, Ocean Engineering Centre, Indian Institute of Technology, Chennai 600036, India Received 28 May 1999; accepted 30 March 2000.

Index Terms

Computer Science

Applied Sciences
Keywords
Ground Granulated Blast Furnace Slag Cement Concrete Compressive Strength.