Abstract

Caching is a fundamental technique commonly employed to hide the latency gap between
memory and the CPU by exploiting locality in memory accesses. On today’s architectures a cache miss may cost several hundred CPU cycles [1]. In a two-level memory hierarchy, a cache performs faster than auxiliary storage, but is more expensive. Cost concerns thus usually limit cache size to a fraction of the auxiliary memory’s size. This paper represents a comparative predictability about some of the traditional and new replacement techniques in contrast with OPTIMAL replacement technique.

References


- Sorav Bansal and Dharmendra S. Modha, ”CAR: Clock with Adaptive Replacement.” USENIX File and Storage Technologies (FAST), March 31-April 2, 2004, San Francisco, CA.
- D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho, and C. S. Kim, “LRFU: A spectrum of policies that subsumes the least recently used and least frequently used policies,”
- Development of a Virtual Memory Simulator to Analyze the Goodness of Page Replacement Algorithms Fadi N. , Sibai, Maria Ma, David A. Lill
- The LRU-K Page Replacement Algorithm For Database Disk Buffering Elizabeth J. O'Neil 1, Patrick E. O'Neill, Gerhard Weikum2 SIGMOD 15193 AVaahin~ton, DC,USA @1993ACM.

Index Terms
Computer Science Information Technology

Keywords
Memory Management Cache Performance Replacement Policy Hit Ratio Analysis