Abstract

Cloud is an emerging technology where the providers provide various services to Information Technology by adopting the concept of service oriented architecture, distributed, autonomic, and utility computing. In the present competitive world, building a highly dependable cloud application and opting for the optimal fault tolerant technique for cloud components has become crucial. In this paper, a component ranking framework is needed for identifying critical components along with the ranking prediction framework for selecting optimal cloud services. Additionally, Kernel Principal Component Ranking approach is proposed to have better accuracy in selecting the significant values for identifying critical components. Subsequent to the component ranking, an optimal fault-tolerance strategy is also proposed to automatically
Scheduling Fault Tolerant Cloud Applications using Component Ranking

determine the strategy apt for identified critical cloud components. Thus metaheuristic
algorithms are used for optimal fault tolerant strategy selection. The simulation results show
that by tolerating faults of a minor fraction of the most critical components, the reliability of cloud
applications can be greatly improved.

References

- Avizienis, 1995, "The Methodology of N-Version Programming," Software
- Colomi, M. Dorigo et V. Maniezzo, 1991, Distributed Optimization by Ant Colonies,
 Publishing, 134-142.
- Andrzej Goscinski, Michael Brock, 2010, "Toward dynamic and attribute based
 publication, discovery and selection for cloud computing", Future Generation Computer
 Systems, pp. 947-970.
- D. Karaboga, 2005 An Idea Based On Honey Bee Swarm for Numerical Optimization,
 Technical Report-TR06,Erciyes University, Engineering Faculty, Computer Engineering
 Department.
- Jose Luis Lucas-Simarro, Rafael Moreno-Vozmediano, Ruben S. Montero, Ignacio M.
 Llorente, 2012, "Scheduling strategies for optimal service deployment acrossmultiple
- Linlin Wu, Saurabh Kumar Garg, Rajkumar Buyya, 2011, "SLA-based admission
 control for a Software-as-a-Service provider in Cloud computing environments ", Journal
 of Computer and System Sciences, pp. 1280–1299.
- Michael Armbrust et al., 2010, "A View of Cloud Computing," Comm. ACM,
 vol. 53, no. 4, pp. 50-58.
- Pawel Czarnul, 2012,"An Evaluation Engine for Dynamic Ranking of Cloud
 Providers", Informatica 37, pp. 123–130.
- Sheheryar Malik, Fabrice Huet, 2011, "Adaptive Fault Tolerance in Real Time
- Swapna. S. Gokhale and K. S. Trivedi, 2002, "Reliability Prediction and Sensitivity
 Analysis Based on Software Architecture," Proc. Int'l Symp. l Symp. Software Reliability
 Eng. (ISSRE '02), pp. 64-78.
- M. Dorigo, 1992, Optimization, Learning and Natural Algorithms (in Italian), Ph. D.
 thesis, DEI, Politecnico di Milano, Italy, pp. 140
- Randell B. and Xu J., 1995 "The Evolution of the Recovery Block Concept,"
- Tom Heskes et. al, 2009, Kernel Principal Component Ranking:Robust Ranking on Noisy
 Data, Institute for Computing and Information Sciences, Radboud University Nijmegen.
- Zibin Zheng et al. 2012, "Component Ranking for Fault-Tolerant Cloud

Index Terms
Keywords
Cloud Computing Ranking Prediction Fault Tolerance