Abstract
The personal identification approaches using iris images are receiving increasing attention in the biometrics literature. Several methods have been presented in the literature and those based on the phase encoding of texture information are suggested to be the most promising. However, the combinations of different approaches are more promising now days, to achieve further improvement in the performance. This paper presents a comparative study of the performance from the iris authentication using Haar wavelet, Multiresolution and the proposed block sum method. Our experimental results suggest that the performance of this combination is most promising, both in terms of performance and the computational complexity. Our experimental results on the CASIA v3 database illustrate significant improvement in the performance which is not possible with either of these approaches individually.

Reference

of the 3rd International Conference on Advances in Pattern Recognition (ICAPR '05), vol. 3687
- L. Ma, Y. Wang and D. Zhang, “Efficient Iris Recognition by Characterizing key Local
- K. Bae, S. Noh, and J. Kim, “Iris feature extraction using independent component
analysis,” in Proceedings of the 4th International Conference on Audio- and Video-Based
Biometric Person Authentication (AVBPA ’03), vol. 2688, pp. 1059–1060, Guildford, UK, June
2003.
- W. W. Boles and B. Boashash, “A human identification technique using images of the iris
and wavelet transform,” IEEE Transactions on Signal Processing, vol. 46, no. 4, pp. 1185–1188,
1998.
advanced correlation filter,” in Proceedings of the International Conference on Advances on
Biometrics (ICB ’06), vol. 3832 of Lecture Notes in Computer Science, pp. 382–388, Springer,
Hong Kong, January 2006.
- J. Daugman, “Statistical richness of visual phase information: update on recognizing
on adaptive Gabor filter,” in Proceedings of the International Conference on Advances on
Biometrics (ICB ’06), vol. 3832 of Lecture Notes in Computer Science, pp. 457–463, Springer,
Hong Kong, January 2006.
- B. V. K. Vijaya Kumar, C. Xie, and J. Thornton, “Iris verification using correlation filters,” in
Proceedings of the 4th International Conference Audio and Video-Based Biometric Person
Authentication (AVBPA ’03), vol. 2688 of Lecture Notes in Computer Science, pp. 697–705,
Proceedings of the International Conference on Advances on Biometrics (ICB ’06), vol. 3832 of
- S. Lim, K. Lee, O. Byeon, and T. Kim, “Efficient iris recognition through improvement of
feature vector and classifier,” Electronics and Telecommunications Research Institute Journal,
- X. Liu, K. W. Bowyer, and P. J. Flynn, “Experiments with an improved iris segmentation
algorithm,” in Proceedings of the 4th IEEE Workshop on Automatic Identification Advanced
- X. Liu, K. W. Bowyer, and P. J. Flynn, “Experimental evaluation of iris recognition,” in
Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern
- L. Ma, T. Tan, Y. Wang, and D. Zhang, “Personal identification based on iris texture
- L. Ma, T. Tan, Y. Wang, and D. Zhang, “Efficient iris recognition by characterizing key
recognition algorithm,” in Proceedings of the International Conference on Advances on
Biometrics (ICB ’06), vol. 3832 of Lecture Notes in Computer Science, pp. 356–365, Springer,
An Effective Iris Recognition System Based on Efficient Multialgorithmic Fusion Technique

Hong Kong, January 2006.

- R. P. Wildes, “Iris Recognition: An Emerging Biometric Technology”, Proceedings of the
An Effective Iris Recognition System Based on Efficient Multialgorithmic Fusion Technique


Index Terms

Computer Science \hspace{1cm} Wireless

Key words

Iris segmentation
Normalization
Feature extraction
Haar transform
multiresolution
Block sum method
Knn Classifier
Score fusion