Abstract
Simulations of a 4 x 4 optical packet space switch array based on optically amplified suppressed interference switches (OASIS) were carried out. The OptSim simulator was used to model the structure, to assess the behavior and performance of this switch array. Parameters such as Q factor and bit error rate (BER), jitter were calculated. Implications of cascadability of this switch array are investigated which improves the quality and capacity of the existing networks. Transparent space switch array is an enabling technology for implementing OPS. [1]

References

- Ni Yan, "Simulation of 4 x 4 Optical Packet Space Switch Array Department of Electronic and Electrical Engineering, University College London"
- Arun K. Somani, Byrav Ramamurthy, "Optical Communication Networks for Next-Generation Internet", CSE Journal Articles. Paper 77
- OptSim Study guide by Rsoft Design Group Inc.
- J. Leuthold: Trends in the Field of All-Optical Wavelength Conversion and Regeneration for Communication up to 160 Gbit/s, in Proc. ECOC, Glasgow, 2005, paper Tu3. 3. 6.
- Y. Miyazaki, et al. : Polarization-Insensitive SOA-MZI Monolithic All-Optical

- George N. Rouskas, Lisong Xu, "Optical Packet Switching", Department of Computer Science, North Carolina State University.

- David K. Hunter, Meow C. Chia, and Ivan Andonovic, "Buffering in Optical Packet Switches", Journal LIGHTWAVE TECHNOLOGY, VOL. 27, NO. 3, FEBRUARY 1, 2009

- Arun K. Somani, Byrav Ramamurthy, "Optical Communication Networks for Next-Generation Internet", CSE Journal Articles. Paper 77
Paper-Photonic-Packet-Switching-and-the-Evolution-of- Optical-Networks
- https://code. ua. pt/projects/bookco1011/wiki/_1242_Optical_packet_Switching_%28OPS%29

Index Terms

Computer Science

Communication
Keywords
Optical Switch q-factor ber