Abstract

In this paper we will present a review on the development of semiconductor Memories through the most recent decade. Starting demands of low power devices is extending therefore; this is the reason for scaling of CMOS advancement. In view of the scaling, size of the chip diminishments and number of transistor in structure on chip increases. Generally the amount of transistors utilized as a piece of chip to store data so, in future the need of low power memories is growing. The extended enthusiasm for mobile phones has incited amazing examination attempts in the setup and progression of low power circuits. Memories are the critical section in present day for automated systems, for instance, chip and Digital Signal Processors (DSPs)
that are utilized as a piece of mobile phones. This paper will give a comparison of SRAM memories cell on the basis of their architecture.

References

- ITRS: International technology road map for semiconductors, test and test equipments (2006)
- Jinshen Yang, Li Chen, A New Loadless 4 Transistor SRAM Cell with a 0.18 µm CMOS Technology, Canadian Conference of Electrical and Computer Engineering, CCECE 2007, pp. 538-541, Apr 2007
Comparative Study of Technology in Semiconductor Memories-A Review

Index Terms

Computer Science

Circuit And Systems

Keywords
Sram Cell; Low Power; Noise Margin; Leakage Current