Grid computing allows users to locate computing resources and data dynamically during the computation. One of the main challenges in Grid computing is efficient selection of resources for the tasks submitted by users. Resource Selection is the most crucial phase in grid scheduling and resource management. The goal of selection is to identify a list of authenticated resources that are available in the grid for job submission and to choose the best node. The challenges for the best resource selection involve analysis of several factors such as prediction time to run a job, access restriction to resources, and cost to use resources. In this paper we present a DBRS (Decision based Resource Selection) architecture that combines these influential factors and make the resource selection process more effective. We proposed the decision-making process which includes time utility function, price utility function and resource assessment and based upon these values we calculate multi attribute value. Then according to the multi utility
values we rank the resources. The resource having highest multi utility values given highest rank and got selected for job submission.

References

- Buyya R; A Grid simulation toolkit for resource modeling and application scheduling for parallel and distributed computing; www.buyya.com/gridsim/.

Index Terms

Computer Science
Emerging Trends in Technology

Keywords

Grid Computing Resource Selection Ranking Execution Time