Abstract

One of the options to mitigate fading effects in mobile communication is adaptive transmitter gain. This paper proposes a simple technique to eliminate the effects of fading in different multi antenna set-ups by varying the transmitter gain. The multi antenna set-ups considered in this paper include Single input-single output (SISO), Single input-multi output (SIMO), Multi input-single output (MISO), Multi input-multi output (MIMO) systems. For all these set-ups, the data streams after doing BPSK modulation is transmitted together with the transmitter gain through a frequency-selective Rayleigh fading channel. The Channel State Information (CSI) is unknown to the receiver and so, before doing equalization the channel characteristics are determined using the Least Mean Square (LMS) algorithm. The average Bit Error Rate (BER)
for different values of the transmitter gain is calculated and the performances of the different
set-ups are compared. Also, the BER for different Signal-to-Noise Ratio (SNR) are obtained for
the different systems. Both the above BER analysis schemes are then repeated by applying
three different error correction codes. The error correction coding schemes used in this paper
includes Linear block coding, Cyclic coding and Hamming coding. Out of the three coding
techniques, the one that gives the best possible result is taken into consideration and the
difference in BER for the coded and uncoded multi antenna systems are analyzed.
Performance is also analyzed in terms of the coding gain. All the above cases are repeated for
Rician channel as well. Finally, we will see that our results are identical to that of some
previously reported works.

References

- Togneri, R., Lecture notes from ITC314, The University of Western Australia.
- Clark, G. C., Gain, J. B., "Error-Correction Coding for Digital
- Hayes, M. H., "Statistical Digital Signal Processing and Modelling";
- Barry, J. R., Lee, E. A., Messerschmitt, D. G., "Digital Communications";
 Third Edition.
- Alamouti, S. M., "A Simple Transmit Diversity Technique for Wireless
- Varade, S., Kulat, K., "BER Comparison of Rayleigh Fading, Rician Fading and
 AWGN Channel using Chaotic Communication based MIMO-OFDM system'';
 IJSCE, ISSN:2231-2307, vol. 1, Issue-6, January 2012
- Sachdeva, N., Sharma, D., "Diversity: A Fading Reduction Technique";
 International Journal of Advanced Research in Computer Science and Software Engineering,
- Durai, S., "Channel Fading in Mobile Communication"; International Journal
 of Computer & Organization Trends, July to August issue 2012.
- Miah, M. S., Rahman, M. M., Godder, T. K., Singh, B. C., Parvin, M. T.,
 "Performance Comparision of AWGN, Flat Fading and Frequency Selective Fading
 Channel for Wireless Communication System using 4QPSK"; IJCIT,
 ISSN:2078-5828(Print), ISSN:2218-5224(Online), vol. 1, Issue-2, 2011.
- Adeyemo, Z. K., Raji, T. I., "Bit Error Rate Analysis for Wireless Links using
- Agnien, J., "Error Correcting Codes for Wireless Communications"; prepared
 for EE6390: Introduction to Wireless Communications, University of Texas at Dallas, December
1999.

Index Terms

Computer Science

Wireless Communications

Keywords

Rayleigh Fading Rician Fading Linear Block Codes Cyclic Codes Hamming Codes Coding Gain Lms (least Mean Square) Transmitter Gain