Abstract

The advancements in multi processors based computers with parallel computing has increased the computational speed. The multi processors consists of hundreds of processor cores or graphics processing units are designed for multimedia applications to improve the pixel resolution. These processors are also used for general computations are called as General Processing GPU (GP-GPU). The exploration of multi cores in CUDA (Compute Unified Device Architecture) led to parallel computation. CUDA C is a high level programming
language released by NVIDIA in 2006 for its NVIDIA GPUs. In this paper a high speed convolution algorithm is implemented on CUDA based graphics processing unit. The implemented algorithm is evaluated based on computational speed. Simulation results shows that computational speed by GPU has been increased by many folds when compared with CPU.

References

- Xiaoxia Qi, Xiao Ma, Dou Li, Yuping Zhao, "Implementation of Accelerated BCH Decoders on GPU" , 978-1-4799-0308-5/13/$31. 00 © 2013 IEEE.
- Yue Zhao and Francis C. M. Lau, "Implementation of Decoders for LDPC Block Codes and LDPC Convolutional Codes Based on GPUs"; IEEE transactions on parallel and distributed systems.
- Alexandros Papakonstantinou1,Karthik Gururaj , John A. Stratton1, Deming Chen1, Jason Cong ,Wen-Mei W. Hwu, "FCUDA: Enabling Efficient Compilation of CUDA Kernels onto FPGAs"; 2009 IEEE 7th Symposium on Application Specific Processors (SASP).
- Ke Yan, Junming shan, Eryan Yang, "cuda-based acceleration of the jpeg decoder"; 2013 Ninth International Conference on Natural Computation -(ICNC).

Index Terms

Computer Science

Parallel Computing
Keywords
Cuda Gp-gpu dft convolution Cuda C