Abstract

Today’s computing world and application business sector is ruled by cloud innovation. Distributed computing gives an effective computing model and provides services over the system and has risen as another endeavor model. With Cloud computing, the administration suppliers can give on-interest administrations to clients as required. In cloud frameworks, gigantic assets are included and processing is done at an extremely incomprehensible scale which empowers clients to get to colossal amount of assets at run time. Be that as it may, there is vulnerability of the interest of cloud assets by the end clients as it can vary continuously upon the time. Additionally it turns out to be expensive issue in keeping up adequate assets to meet peak resource requirement constantly. This is the place dynamic elasticity or dynamic
provisioning comes into picture. Dynamic provisioning of cloud is exceptionally important as it permits the servers to resize the virtual machine conveyed in the framework and accordingly satisfying the necessity of new assets. Elasticity can be considered as the next extraordinary accomplishment which is getting much attention. In this paper, an effort has been put to examine the effect of elasticity on cloud frameworks and how it will be advantageous for the Cloud implementers to enhance the task execution and lessen the operation cost.

References

- Zhen Xiao, Senior Member, IEEE, Qi Chen, and Haipeng Luo, "Automatic Scaling of Internet Applications for Cloud Computing Services", IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 5, MAY 2014
- Jianfeng Zhan, Member, IEEE, Lei Wang, Xiaona Li, Weisong Shi, Senior Member, IEEE, Chuliang Weng, Wenyao Zhang, and Xiu Tao Zang, "Cost-Aware Cooperative Resource Provisioning for Heterogeneous Workloads in Data Centers", IEEE TRANSACTIONS ON COMPUTERS, VOL. 62, NO. 11, NOVEMBER 2013
- Sangho Yi and Derrick Kondo, INRIA Grenoble Rhone-Alpes, France and Artur Andrzejak, Zuse Institute Berlin (ZIB), Germany; "Reducing Costs of Spot Instances via Checkpointing in the Amazon Elastic Compute Cloud", published in EC project eXtreemOS (FP6-033576) and the ANR project Cloudshome (ANR-09-JCJC-0056-01)

Index Terms

Computer Science

Distributed Systems
Keywords
Cloud Computing; Cost Optimization; Elasticity; Performance; Throughput