Abstract

Wireless Sensor Networks (WSN) depend on the algorithms and protocols for Communication and Computation. In this paper, the target tracking application in WSNs consist of active sensors. Sensor senses the environment actively by emitting energy and measuring the reflected energy. In the algorithm, a presentation of novel collaborative sensing scheme is used to sense the multiple targets and high maneuvering targets in an energy efficient method. Joint sensing can increase the sensing region of an individual emitting sensor and generate multiple sensor measurements simultaneously. In order to conserve energy, the sensors may be put into sleep mode. Adaptive Scheduling is used to estimate the target velocity using sensor measurements, to predict the target movement. Joint Sensing is used to track the targets accurately as compared to the individual sensing. Multiple and high maneuvering targets are identified with energy efficiency.
References

- Dan Liu, Nihong Wang and Yi An "Dynamic Cluster Based Object Tracking Algorithm in WSN" 2010 Second WRI Global Congress on Intelligent Systems pp 397-399
- George K. Atia, Venugopal V. Veeravalli and Jason A. Fuemmeler "Sensor Scheduling for Energy-Efficient Target Tracking in Sensor Networks" on IEEE TRANSACTIONS ON MOBILE COMPUTING 2011
- Dan Liu, Nihong Wang and Yi An "Dynamic Cluster Based Object Tracking Algorithm in WSN" 2010 Second WRI Global Congress on Intelligent Systems pp 397-399

Index Terms

Computer Science Emerging Trends in Technology

Keywords

Quality Of Information Target Tracking Joint Sensing Sensor Scheduling Adaptive Scheduling