Abstract

In this paper, a comparative analysis of the carrier based pulse width with third harmonic injection and Digital pulse Width used in the inverter control is presented. The placement of the modulating components within the carrier interval determines the harmonic performance of the modulation strategy. The third harmonic injected modulated inverter and the digital pulse width modulation technique gives higher value of line to line voltage as compared with the conventional sine pulse width modulated (SPWM) inverter. The optimized third-harmonic injection controls the blanking time and minimum pulse width of an operating inverter switch. Whereas Digital Pulse-Width Modulation technique eliminates limit cycle oscillations for the applications with high switching frequency. The simulation results are presented with different PWM techniques and study of total harmonic distortion in the line voltage and current is
Comparison of Full Bridge Voltage source Inverter with Different PWM Techniques

analyzed for the three phase voltage source inverter using IGBT as a switching device.

Referenced

- Mr. JOBY JOSE, Prof. G. N. GOYAL and Dr. M. V. AWARE "Improved Inverter Utilization Using Third Harmonic Injection";
- Srinivasa Rao Maturu* and Avinash VujjiDing, "SVPWM Based Speed Control of Induction Motor Drive with Using V/V Control Based 3-Level Inverter"; VSRD-IJEECE, Vol. 2 (7), 2012, 421-437
- Prof. G. N. GOYAL and Dr. M. V. AWARE "A Comparative Performance of Six-Phase Nine Switch Inverter Operation with SPWM and SVPWM";
- Yang Qiu, Jian Li, Ming Xu, Dong S. Ha, Fred C. Lee "Proposed DPWM Scheme with Improved Resolution for Switching Power Converters"; at Center for Power Electronics Systems Virginia Polytechnic Institute and State University Blacksburg, VA 24061 USA
- Yunxiang Wu, Member, IEEE, Mohsin A. Shafi, Member, IEEE, Andrew M. Knight, Senior Member, IEEE, and Richard A. McMahon "Comparison of the Effects of Continuous and Discontinuous PWM Schemes on Power Losses of VoltageSourced Inverters for Induction Motor Drives"; IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 26, NO. 1, JANUARY 2011
- Cristian Aghion1, Mihai Lucanu2, Ovidiu Ursaru3 1,2,3 "Gh. ASACHI" Technical University of Iasi Faculty of Electronics, Telecommunications and Information Technology Bvd. Carol I, nr. 11, RO-700506, Iasi; DPWM-S3 Software Control for Three phase Inverters; 978-1-4244-37863/09/$25.00 ©2009 IEEE
- Lu-Sheng Ge1, Zong-Xiang Chen, Zhi-Jie Chen and Yan-Fei Liu1, (Senior Member, IEEE) "Design and Implementation of A High Resolution DPWM Based on A Low-Cost FPGA"; 978-14244-5287-3 ©2010 IEEE
- Pardasani Hitendra K. Arora Kapildev N. "Simulation of Three Level Inverter Using Sinusoidal Pulse Width Modulation Technique by MATLAB"; National Conference on Recent Trends in Engineering & Technology
Comparison of Full Bridge Voltage source Inverter with Different PWM Techniques

Index Terms

Computer Science

Pwm Techniques

Keywords

Harmonics Sine Pulse Width Modulation Third-harmonic Pulse Width Modulation

Voltage Source Inverter.