Abstract

This paper proposed a planar microstrip ultra wideband (UWB) bandpass filter (BPF) with wide upper stopband designed for applications in UWB wireless communication as stated by Federal Communications Commission (FCC). The proposed UWB filter is realized with a basic multiple mode resonator (MMR) structure feed by interdigital coupled lines for achieving higher degree of coupling. To achieve a wide upper stopband a sharp cutoff 3rd order Low Pass filter is cascaded with MMR. This filter is designed on RT/Duroid 6010 substrate of thickness 1.27 mm with Dielectric constant 10.2. The electromagnetic simulation software, Computer Simulation Technology Microwave Studio (CST MWS) is used for the simulation and analysis of the
designed structure. The insertion loss of proposed filter is less than 0.2 dB at 6.8 GHz and very flat over whole pass band (3.1-10.6 GHz) also return loss is greater than 12 dB in the passband. By adding the low pass filter, the upper stopband is extended up to 20 GHz.

References

- Qi Li, Chang-Hong Liang, Senior Member IEEE, Hai-Bin Wen, Guo-Chun Wu "Compact Planar Ultra-Wideband (UWB) Bandpass Filter with Notched Band" IEEE 2009.
- Sheng Sun, Student Member, IEEE, and Lei Zhu, Senior Member, IEEE "Capacitive-Ended Interdigital Coupled Lines for UWB Bandpass Filters With Improved Out-of-Band Performances" IEEE Microwave and Wireless Components Letters, vol. 16, no. 8, August 2006.
- Xiu Yin Zhang, Yao-Wen Zhang and Quan Xue, "Compact Band Notched UWB Filter Using Parallel Resonators With a Dielectric Overlay" Microwave and Wireless Components Letters, Vol. 23, No. 5, pp. 252-254, May 2013.

Index Terms

Computer Science Communications
Keywords
Ultra Wide Band; Upper Stopband; Interdigital; Multiple Mode Resonator; Low Pass Filter; Microstrip.