

Abstract

The various studies conducted for classification of handwritten signatures of people have shown that the task is difficult because there is intra personal differences among the signatures of the same person. The signatures of the same person vary with time, age of the person and also because of the emotional state of a person. The task of classifying the skilled forgery signatures is all the more challenging because they are the result of lot of practice, closely imitating the signature. Neural networks based classifiers have proved to yield very accurate results. This paper for offline signature verification uses the images stored in the GPDS database. The preprocessed images are decomposed using discrete wavelet transform up to
the maximum level. The wavelet energy features corresponding to the approximation and detail along with the approximation and detail coefficients make the feature set. A pattern recognition neural network is designed which classifies the inputs based on the target classes.

References

- Hazem Hiary, Raja Alomari, Thaeer Obbaey, Radi Z Al-Khatib, AL-Zu'BI, Hashem Hasan, "Offline signature recognition and verification based on DWT and common features extraction", Journal of theoretical and applied information technology, Vol. 51, No. 2, 20th may, 2013
- P. Mautner, V. Matousek, T. Marsalek, "Signature verification based on self-organizing feature maps", university of Bohemia, Czech republic
- Maged M. M. Fahmy, "Online handwritten signature verification system based on
DWT features extraction and neural network classification" , Ain Shams Engineering Journal, ISSN 2090-4479, Volume 1, Issue 1, Pages 59-70, September 2010
- M. Fakhlai, H. Pourreza, "Off line Signature Recognition Based on Wavelet, Curvelet and Contourlet Transforms", 8th WSEAS International Conference on Signal Processing, Computational Geometry and Artificial Vision, (ISCGAV@apos;08), August 20-22, 2008

Index Terms

Computer Science Pattern Recognition

Keywords
Wavelets Principal Component Analysis Pattern Recognition Neural Network