Abstract

Grid computing is a distributed computing taken to next evolutionary level. In this work, a static methodology has been adopted for defining the weights of the computational tasks and communicating edges. Also, we defined the execution time (makespan) as the total time between the finish time of exit task and start time of the entry task in the given Directed Acyclic Graph (DAG). The algorithm has been implemented for evaluation of time and cost of different
random task graph or DAG of different graph size. Also, the algorithm has been executed in a
grid of heterogeneous cluster of different sizes with four resources in each cluster. The primary
work is to find the primary scheduling i.e., total execution time and total cost with little or no
changes in primary scheduling. We have proposed an efficient scheduling algorithm, which
optimize the makespan and economic cost of the schedule and minimize the requirements of
processors. The algorithm has been implemented to schedule different random DAGs onto
different grids of heterogeneous clusters of various sizes.

References

- Fost, Ian, Carl Kesselman, Steve Tuecke, The Anatomy of the Grid: Enabling Scalable
- Klaus Krauter, Rajkumar Buyya, and Muthucumaru Maheswaran. “A Taxonomy and
 Scheduling for Heterogeneous Computing?, IEEE Transactions on Parallel and Distributed
- R. Sakellariou and H. Zhao, “A Hybrid Heuristic for DAG Scheduling on Heterogeneous
 Systems?, in Proceedings of the 13th Heterogeneous Computing Workshop (HCW’04),
 Santa Fe, New Mexico, USA, pp. 26 - 30, 2004.
- M. Maheswaran and H. J. Siegel, “A Dynamic Matching and Scheduling Algorithm for
 Heterogeneous Computing Systems?, in Proceedings of the Seventh Heterogeneous
- Abramson D, Giddy J, Kotler L. “High performance Parametric Modeling with Nimrod/G:
 Killer Application for the Global Grid?? Proceedings International Parallel and Distributed
 Processing Symposium (IPDPS 2000), Cancun, Mexico, 1–5 May 2000. IEEE Computer
- Buyya R, Abramson D, Giddy J. “A Case for Economy Grid Architecture for
 Service-Oriented Grid Computing?. Proceedings of the International Parallel and Distributed
 Processing Symposium: 10th IEEE International Heterogeneous Computing Workshop (HCW
 SETIPproject Based on Project Serendip Data and 100,000 Personal Computers?.
 berkeley. edu/woody paper. html.
 and Scheduling System in a Global Computational Grid?. Proceedings 4th International
 Conference and Exhibition on High Performance Computing in Asia-Pacific Region (HPC ASIA
 2000.
- Rajkumar Buyya, David Abramson, and Srikumar Venugopal, “The Grid Economy,
 Special Issue on Grid Computing?, Proceedings of the IEEE, Manish Parashar and Craig
Minimizing the Makespan and Economic Cost of Schedule for the Grid Applications

- Q. Huang, N. Xiao, and B. Liu, ?Grid Load Forecasting Based on Least Squares

Index Terms

Computer Science Distributed Computing

Keywords

Dag Grid Makespan Workflow