Abstract

We present a successful application of Artificial Intelligence (AI) methodologies in the context of a network oriented virtual care service for diabetic patients management, developed within the public-funded NODDS project. Several AI methods have been exploited to implement the NODDS functionality. Temporal Abstractions and other Intelligent Data Analysis techniques are used to analyse the patient’s monitoring data; the Case Based Reasoning (CBR) methodology is applied to perform the Knowledge Management task. The NODDS service is being tested through a small on field trial; the first results, though preliminary, seem to substantiate the hypothesis that the use of an AI-based risk evaluation system could present an advantage in the management of type 1 diabetic patients, leading to a more tight control of the patients’ metabolic situation, in a cost-effective way.
References

- R. S. H. Istepanian and A. Tseng, 2001, Diabetes Management using Advanced Mobile Technologies for Cost-Effective, Real-Time Patient Monitoring, in Proc. of eHealth, 3rd International Conference on Advances in the Delivery of Care, pp. 139-143, City University, UK.
- S. Andreassen et al., 1994, A probabilistic approach to glucose prediction and insulin dose adjustment: description of metabolic model and pilot evaluation study, Computer Methods and Programs in Biomedicine, 41, 153–165.
- J. L. Kolodner, 1993, Case-Based Reasoning, Morgan Kaufmann.
- I. Kononenko, Inductive and Bayesian learning in medical diagnosis, Applied Artificial Intelligence, 7, 317–337.

Index Terms
Keywords
Decision-support System Diabetes Mellitus Insulin Therapy.