
International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.1, August 2015

32

Analysis of Object Oriented Metrics on a Java

Application

D.I. George Amalarethinam

Associate Professor
Department of Computer Science

Jamal Mohamed College
Tiruchirappali, India

P.H. Maitheen Shahul Hameed
Associate Professor

Department of Computer Science
Jamal Mohamed College

Tiruchirappali, India

ABSTRACT
Object oriented metrics have become more important in software

development environment. They are used to measure software

quality and to estimate the cost, to enhance reliability,

maintainability and effort of software projects. Object oriented

metrics estimate the complexity of OO programs. This paper

highlights all the object oriented metrics which are proposed in

the last two decades such as CK metrics, Moose Metrics,

QMOOD Metrics, GQM, MOOSE, LI Metrics, Chen Metrics,

Lorenz Kidd Metrics, Reuse Metrics and EMOOSE. The need

for such metrics is particularly acute when an organization is

adopting a new technology for which established practices have

yet to be improved. This research addresses these desires

through the development and implementation of a suite of

metrics for OO design. The equations and measurement

calculation methods for all mentioned OO metrics are clearly

defined. In this research paper a java program is taken as a

model with OOP concepts such as inheritance, polymorphism,

and abstraction. The above mentioned Object oriented metrics

are applied on this java program and the results of each metrics

are tabulated clearly. The objective of the research is to select

the correct object oriented metrics for their models and

application for software developers.

Keywords
Object oriented metrics, Classes, Methods, Inheritance.

1. INTRODUCTION
Object Oriented Design and Development is an interesting area

of current research and many authors have done great deal of

work in modern years. In fact, Object Oriented Development is

not only a different approach to design and implementation, but

also an approach to software metrics. To produce high quality

Object Oriented applications a strong emphasis on design

aspects is highly necessary. Software metrics make it possible

for software engineers to measure and predict software systems,

essential resources for a project and products relevant for a

software evolution. A software quality provides software

engineers with a means of quantifying the assessment of a

software product. Measurement can be used throughout a

software project to assist in estimation, productivity assessment,

quality control and project control [1]. Object oriented analysis

and design focuses on objects as the primary agents involved in

a computation; each class of data and related operations are

collected into a single system entity. There are several object

oriented programming languages that support object oriented

paradigm. Most commonly used are Java, C++, C sharp, and

Vb.net [2].

In this paper, a java application with advanced OOP features like

inheritance, abstraction, and polymorphism is considered. Object

oriented metrics have separate types of metrics for each feature

of OOP. Each feature is measured by using correct metrics with

their equations and calculated methods.

The metrics presented in this paper are by no means a complete

set of object oriented metrics for JAVA. But this analysis can be

used as a reference by software developers and managers for

building a fault free, consistent and easy to preserve software

product in JAVA. There are many distinguished features in

JAVA that make it different from other object oriented

languages. So future work will be to refine the current metrics

and define additional metrics. By using these results the software

designers and developers, can easily use the correct metrics for

the validation of various types of programming applications.

This research helps the software designers and developers to

select the correct metric types for their models and applications.

Because in this paper it is clearly explained each and every

metrics with their usage, limitations, equations, calculation

methods, sources etc. The object oriented metrics have applied

and validated for a java application. The results of evaluation

methods are clearly described.

This paper is organized as follows. Section 2 presents a very

brief summary of the literature review, Section 3 presents

various metrics and their characteristics suite for object-

oriented programming, Section 4 presents a JAVA program

applied metrics for OOP, and Section 5 shows the results and

discussion.

2. LITERATURE SURVEY

Gomathi. S, and Edith Linda. P proposed an over view of the

OO metrics MOOSE, MOOD, QMOOD, and Chen metrics [3].

This paper highlights, while searching for object oriented

metrics and find a particular metrics parameter and many are

scattered. This paper mainly aims at collecting all those

necessary parameters, organize it and display it in a single paper.

Website Admin proposed comparison and review on object

oriented metrics [4]. This paper reviews and analyzes the

difference between all the object oriented metrics effectively and

maintain the comparison table.

Arti Chhikara and R.S. Chhillar proposed analyzing the

complexity of JAVA programs using Object Oriented Software

Metrics [5]. In this research, they investigate several object

oriented metrics and applied these metrics to several java

programs to analyze the complexity of software product.

Amit Sharma and Sanjay Kumar Dubey proposed comparison

of software quality metrics for object oriented system [6]. In this

research they highlight the classification of metrics like software

quality metrics and the object oriented metrics and maintain the

comparison table.

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.1, August 2015

33

Amjan Shaik, C. R. K. Reddy, Bala Manda, Prakashini. C,

Deepthi. K proposed an empirical validation of object oriented

design metrics in object oriented systems [1]. In this paper we

provide empirical evidence underneath the role of object

oriented design metrics specifically a subset of the CK metric

suite.

Seyyed Mohsen Jamali proposed object oriented metrics [7].

This research addresses the needs through the development and

implementation of suite of metrics for object oriented design.

K.K.Aggarwal, Yogesh Singh, Arvinder Kaur, Ruchika

Malhotra proposed empirical study of object oriented metrics

[8]. This paper investigates 22 metrics proposed by various

researchers.

3. VARIOUS METRICS

Object oriented metrics are based on the data and procedure

model of structured analysis, Object Oriented metrics are also

based on the objects and their characteristics. Various types of

metrics are Chidamber & Kemerer's Metrics, LI Metrics, Lorenz

and Kidd Metrics, Chen Metrics, MOOSE Metrics, EMOOSE

Metrics, MOOD Metrics, QMOOD Metrics, Reuse Metrics,

Goal Question Metrics (GQM).

3.1 Chidamber & Kemerer's Metrics (CK

Metrics)
Chidamber and Kemerer's metrics suite for OO Design is the

deepest research in OO metrics examination. They have

characterized six metrics for the OO design. In this paper, a

complete description of their metrics is given [7].

3.1.1 Weighted Methods per Class (WMC)
This measures the sum of complexity of the methods in a class.

To predict the time and effort required to develop and maintain a

class it can use the number of methods and the complexity of

each method. It is used to count the methods implemented

within a class [7]. A class C1, with methods M1... Mn , that are

defined in the class. When C1... Cn are the complexity of the

methods, then

 n

WMC = Σ Ci

 i=1 eq. (1)

If all method complexities are to be unity, then WMC = n, the

number of methods [7].

3.1.2 Depth of Inheritance Tree (DIT)
Depth of inheritance of the class is the DIT metric for the class.

In case, involving multiple inheritances, the DIT would be the

maximum length from the node to the root of the tree. It also

helps to find out the inheritance depth of the tree from current

node to the ancestor node [7]

3.1.3 Number of children (NOC)
Number of immediate sub-classes subordinated to a class in the

class hierarchy is defined as NOC. This is used to measure the

subclass subordinate to a class in the hierarchy [7].

3.1.4 Coupling between object classes CBO)
It provides the number of other modules that are coupled to the

current module either as a client or a supplier. A class is coupled

to another if it uses the member functions and/or instance

variables of the other class [9].

3.1.5 Response for a Class (RFC)

RFC is the count of the set of all methods that can be invoked in

response to a message to an object of the class or by some

method in the class. RFC counts the occurrences of calls to other

classes from a particular class [10].

RFC = | RS | where, RS is the response set for the class. The

response set for the class can be expressed as:

RS = { M }  all i { Ri } eq. (2)

where { Ri } = set of methods called by method i and{ M } = set

of all methods in the class [7].

3.1.6 Lack of Cohesion in Methods (LCOM)
LCOM measures the extent to which methods reference the

classes instance data. Cohesion is a degree of methods through

which all the methods of the class are inter-related with one

another and provide a well bounded behavior [10]. Consider a

Class1 with n methods Me1, Me2..., Men. Let {Ij} = set of

instance variables used by methods Mei. There are n such sets

{I1},... {In}.

Let P = { (Ii, Ij) | Ii  Ij = } and Q = { (Ii, ,Ij) | Ii  Ij  }. If

all n sets {I1},... {In} are  then let P = .

LCOM = |P| - |Q|, if |P| > |Q|

 = 0, otherwise

 calculated value [7].

3.2 LI Metrics
LI discovered some metrics as the discovered problems with

Chidamber and Kemerer’s metrics during the course of defining

the unit definition model for the metrics. An alternative suite of

six object-oriented metrics was proposed by LI [11].

Number of Ancestor Classes (NAC), Number of Local Methods

(NLM), Class Method Complexity (CMC), Number of

Descendent Classes (NDC), Coupling Through Abstract Data

Type (CTA), and Coupling Through Message Passing (CTM).

were proposed in order to overcome some limitations found in

Chidamber and Kemerer’s metrics [11].

3.2.1 Number of ancestor classes (NAC)
The Number of Ancestor classes (NAC) metric proposed as an

alternative to the DIT metric measures the total number of

ancestor classes from which a class inherits in the class

inheritance hierarchy.

3.2.2 Number of local methods (NLM)
The Number of Local Methods metric is defined as the number

of the local methods defined in a class which are accessible

outside the class. It measures the attributes of a class that WMC

metric intends to capture.

3.2.3 Class method complexity (CMC)
This metric CMC is defined as the summation of the internal

structural complexity of all local methods.

3.2.4 Number of descendent classes (NDC)
It metric as an alternative to NOC is defined as the total number

of descendent classes (subclass) of a class.

3.2.5 Coupling through abstract data type

(CTA)
It is defined as the total number of classes that are used as

abstract data types in the data-attribute declaration of a class.

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.1, August 2015

34

3.2.6 Coupling through message

passing(CTM)
This is defined as the number of different messages sent out

from a class to other classes excluding the messages sent to the

objects created as local objects in the local methods of the class.

3.3 Lorenz & Kidd Metrics
Lorenz & Kidd proposed a set of metrics that can be grouped in

four categories of size, inheritance, internal and external. Size

oriented metrics for object oriented class may be focused on

count of the metrics, operations and attributes of an individual

class and average value of object-oriented software as a whole.

Inheritance based metrics is totally concentrated in which

operations that are reused through the class hierarchy. Metrics

for the class intervals are totally oriented towards the cohesion,

while the external metrics were used to examine and reuse. It

divide the class based metrics into the broad categories like size,

internal, external inheritance and the main metrics which are

focused on the size and complexity are class size (CS), Number

of operations overridden by a subclass (NOO), Number of

operations added by a subclass (NOA), Specialization index (SI),

Average operation size (OS), Operation complexity (OC),

Average number of parameters per operation (NP) [6].

3.3.1 Class Size metric (CS)
The overall size of a class can be found by using the following

measurements:

1. Total number of methods that are encapsulated within the

class

2. Total number of attributes that are encapsulated within the

class

When the value of CS is increased, it becomes harder to

understand, reuse, test, and maintain [12].

3.3.2 Number of Operations (methods)

Overridden by a subclass (NOO)
There are instances when a subclass changes a method, inherited

from its super class with a specialized version, for its own use.

This type of replacement is called overriding [12].

3.3.3 Number of Operations (methods) Added

by a subclass (NOA).
Subclasses are specialized by adding methods and attributes.

When the value of NOA increases, the subclass discards away

from the abstraction implied by the super class [12].

3.3.4 Specialization Index (SI)
SI provides a rough indication of the degree of specialization for

each of the subclasses in an OO software system. Specialization

can be achieved by either adding or overriding methods.

Specialization can be calculated as follows (Pressman, 2000;

Alhadithi and Taka, 2002) [12].

SI = (NOO * level) / M total eq. (3)

where NOO: number of operations overridden by a subclass.

Level: level in the class hierarchy at which the class resides

M total: total number of methods of a class [12].

3.4 Chen Metrics

3.4.1 Chen et al. proposed software metrics, through which

it can define “What is the behavior of the metrics in object-

oriented design” [4].

3.4.2 RM (Reuse Metric)
RM is a Boolean (0 or 1) indicator metric. Therefore, all of the

terminologies in object oriented language, consider as the basic

components of the paradigm are objects, classes, attributes,

inheritance, method, and message passing [4].

3.5 MOOSE Metrics
Metrics for Object-Oriented Software Engineering

(MOOSE): Chidamber and Kemerer (CK) et al. proposed some

metrics that have generated a significant amount of interest and

are currently the most well-known object-oriented suite of

measurements for Object-Oriented software. The CK metrics

suite consists of six metrics that assess different characteristics

of the object-oriented design are given below. [4]

3.5.1 Weighted Methods per Class(WMC).
This measures the sum of complexity of the methods in a class.

The complexity of the class may be calculated by the cyclomatic

complexity of the methods [4].

3.5.2 Depth of Inheritance Tree (DIT).
DIT metric is used to find the length of the maximum path from

the root node to the end node of the tree. DIT represents the

complexity and the behavior of a class, and the complexity of

design of a class and potential reuse [4].

3.5.3 Number of children (NOC).
According to Chidamber and Kemerer, the Number of Children

(NOC) metric may be defined for the immediate sub class

coordinated by the class in the form of class hierarchy [4].

3.5.4 Coupling Between Objects (CBO).
CBO is used to count the number of the class to which the

specific class is coupled [4].

3.5.5 Response for class (RFC).
The response set of a class (RFC) is defined as set of methods

that can be executed in response and messages received a

message by the object of that class [4].

3.5.6 Lack of Cohesion in Methods (LCOM).
This metric is used to count the number of disjoints methods

pairs minus the number of similar method pairs used. It is used

to measuring the pairs of methods within a class using the same

instance variable [4].

3.6 EMOOSE Metrics
Extended Metrics for Object-Oriented Software Engineering

(Emoose). W.Li et al. proposed this metrics of the Moose

model. They may be described as-

3.6.1 Message Pass Coupling (MPC)
It means that the number of message that can be sent by the class

operations [9]. So if two different methods in class A1 access the

same method in class B1, then MPC = 2. [8]

3.6.2 Data Abstraction Coupling (DAC)
It is used to count the number of classes which an aggregated to

current class and also defined the data abstraction coupling [4].

3.6.3 Number of Methods (NOM)
It is used to count the number of operations that are local to the

class [4].

3.7 MOOD Metrics

Metrics For Object-Oriented Design (MOOD): Each of the

metrics was expressed to measure where the numerator defines

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.1, August 2015

35

the actual use of any one of the feature for a particular design. In

MOOD metrics model, there are two main features, viz, methods

and attributes. The attributes are used to show the status of

objects in the system and methods are used to maintained or

modifying several kinds of status of the objects. Metrics are

defined as given below [4].

3.7.1 Method Hiding Factor (MHF)
MHF is defined as the ratio of the sum of the invisibilities of all

methods defined in all classes to the total number of methods

defined in the system. The invisibility of a method is the

percentage of the total classes from which this method is not

visible [4].

MHF, a measure of encapsulation is defined as:

MHF =

 eq. (4)

where Md(Ci) is the number of methods declared in a class,

 V(Mmi) =

 eq. (5)

where TC is the total number of classes, and

is visible(M mi ,C j) =

 eq. (6)

Thus, for all classes, C1, C2…Cn, a method counts as 0 if

another class, may use it and 1 if it cannot be used by another

class. The total for the system is divided by the total number of

methods defined in the system [8].

3.7.2 Attribute Hiding Factor (AHF)
AHF is defined as the ratio of the sum of the invisibilities of all

attributes defined in all classes to the total number of attributes

defined in the system under consideration. It is defined formally

as [4]

AHF =

 eq. (7)

where Ad(Ci) is the number of methods declared in a class, and

V(Aai) =

 eq. (8)

where TC is the total number of classes, and

is visible(Aai, Cj)=

[5] eq. (9)

3.7.3 Method Inheritance Factor (MIF)
The Method Inheritance Factor (MIF) is defined as the ratio of

the Number of Inherited Methods (NIM) to the Number of

Defined Methods (NDM) and inherited methods in the class[13].

MIF =

 or MIF =

 eq. (10)

where, Ma(Ci) = Mi(Ci) + Md(Ci)

TC = total number of classes

Md(Ci) is the number of methods described in a class

Mi(Ci is the number of methods inherited in a class [8].

3.7.4 Attribute Inheritance Factor (AIF)
The Attribute Inheritance Factor (AIF) is defined as the ratio of

the Number of Inherited Attributes (NIA) to the Number of

Defined Attributes (NDA) and inherited attributes in the class.

AIF is equal to that of MOOD metrics [13].

AIF =

 eq. (11)

It is also defined as follows

AIF =

 eq. (12)

where, Aa(Ci)= Ai(Ci)+ Ad (Ci)

TC= total number of classes

Ad(Ci) which is number of attribute declared in a class

Ai(Ci) which is number of attribute inherited in a class

AIF = 0 % for class lacking inheritance [8].

3.7.5 Polymorphism Factor (PF)
PF defines the ratio of the actual number of possible different

polymorphic situation for class Ci to the maximum number of

possible distinct polymorphic situations for class Ci.

It is defined as below

PF =

 eq. (13)

Mn (Ci) = Number of New Methods

Mo(Ci) = Number of Overriding Methods

DC(Ci) = Descendants Count [8].

3.7.6 Coupling Factor (CF)
NAC is the Number of Actual Couplings with other classes and

NPC is the Number of Possible Couplings of this class with

other classes of the system. Clearly, the numbers of possible

[13].

CF =

 or

It is formally defined as:

CF =

 eq. (14)

is_client(Cc,Cs)=

 eq (15)

Couplings due to the use of the inheritance are not included in

CF, because a class is heavily coupled to its ancestors via

inheritance. If no classes are coupled, CF = 0 %. If all classes are

coupled with all other classes, CF is equal to 100 % [8].

3.8 QMOOD Metrics
Quality Model for Object-Oriented Design (QMOOD): This is a

comprehensive quality model that establishes a clearly defined

and empirically validated model to assess object-oriented design

quality attributes such as understandability, reusability, and

relates it through mathematical expressions, with structural

object-oriented design properties such as encapsulation and

coupling [4].

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.1, August 2015

36

Figure 1- QMOOD Metrics [7]

The QMOOD metrics given in figure 1 can further be classified

into two measures namely,

1. System Measures: - System measures explain such metrics

are DSC (Design Size in Metrics), NOH (Number of

Hierarchies), NAC (Number of Abstract Classes), NLC

(Number of Leaf Classes), ADI (Average Depth of

Inheritance) [4].

2. Class Measures:- Class measure metrics are those metrics

which can define some metrics are NOP (Number of

Polymorphic Method), DCC (Direct Class Coupling), MCC

(Maximum Class Coupling) [4].

The QMOOD metrics measures are shown in the Table 1.

The set of metrics in QMOOD are as follows:

3.8.1 Design Size in classes (DSC).
DSC metric is a count of the total number of classes in the

design.

3.8.2 Number of Hierarchies (NOH).
NOH metric is a count of the number of class hierarchies in the

design [4].

3.8.3 Direct Class Coupling (DCC).
DCC is a count of different number of classes that a class is

directly related to.

3.8.4 Number of Abstract Classes (NAC)
It is a count of total number of abstract classes.

3.8.5 Number of Leaf Classes (NLC)
It is a count of total number of leaf classes.

3.8.6 Average of Depth of Inheritance (ADI)
It is an average value of the depth of inheritance.

3.8.7 Number of Polymorphic methods (NOP)
NOP metric is a count of the methods that can exhibit

polymorphic behavior [4].

Table 1: QMOOD Parameters

Acronym Description

DSC Design Size in Metrics

NOH Number of Hierarchies

DCC Direct Class Coupling

NAC Number of Abstract Classes

NLC Number of Leaf Classes

ADI Average Depth of Inheritance

NOP Number of Polymorphic

Method

3.9 Reuse Metrics
An object-oriented development environment supports design

and code reuse, the most straightforward type of reuse being the

use of a library class (of code), which perfectly suits the

requirements. Yap and Henderson-sellers analysed two

measures, designed to evaluate the level of reuse possible within

classes [8].

3.9.1 Reuse Ratio (U)
The reuse ratio, U, is given by

 U =

 eq. (16)

3.9.2 Specialization Ratio (S)
Specialization ratio, S, is given as

S =

 eq. (17)

3.10 Goal Question Metrics (GQM)
Goal Question Metrics (GQM): V. L. Basili developed GQM

approach. He has also provided the set of sequence which are

helpful for the designers. The goal of GQM is to express the

meaning of the templates which covers purpose, perspective and

environment; a set of guidelines also proposed for driving

question and metrics. It provides a framework involving three

steps: [4]

 Goal (Conceptual level): List major goals of the

development or maintenance project.

 Question (Operational level): Derive from each goal

the questions that must be answered to determine if the

goals are being met.

 Metric (Quantitative level): Decide what must be

measured in order to be able to answer the questions

adequately [4].

Consider the following figure 2, for a particular question; OOPS

and FAULT-FREE are two goals, Q5 (Quality) in common for

both of these goals. The main idea of GQM is that each metric

identified is placed within a context, so all metrics are collected

in order to answer all questions Q1… Q5, which help to achieve

the goals OOPS and FAULT-FREE.

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.1, August 2015

37

Figure 2 - Model for Goal Question Metrics

Hierarchy

4. ALGORITHM - EB Bill
To better define and understand how these metrics are

calculated, an algorithm for EB bill calculation is used as an

example. Figure 3 shows the class diagram.

Step 1: Start

Step 2: Declare an abstraction class named as EB.

Step 3: Declare the variables cust_id and

 Cust_name for the class EB.

Step 4: Define the function EB with the reference parameters as

c_id and cname.

Step 5: Declare the abstraction functions Ucalc() and Acalc().

Step 6: Declare another class named as Cust_details which

extends the EB class.

Step 7: Define a function named as Cust_details with the

reference parameters c_id and cname.

Step 8: Print the values of c_id and cname.

Step 9: Declare another class named as Units which extends the

EB class.

Step 10: Declare the variable cunit and punit for the class Units.

Step 11: Get the values for cunit and punit.

Step 12: Print the values of cunit and punit.

Step 13: Declare another class named as Calculations which

extends the EB class.

Step 14: Declare the variables Tunits and amt for the class

Calculations.

Step 15: Calculate the Tunit (Total units) value.

Step 16: Calculate the amt (amount) value using elseif ladder

function.

Step17: Print the Tunit and amt values.

Step 18: Stop.

Figure 3- Class Diagram

5. RESULTS AND DISCUSSION
These metrics were calculated and tested on a Java program for

EB bill application and following results are obtained. Table 2

shows the 32 object oriented metrics and its measured values.

Table 2: Object Oriented Metrics and its measured values

Sources

Metri

cs

EB

class

Cust_

details

class

Units

class

Calcula

tions

class

CK

Metrics

WM

C

5 3 2 3

RFC 7 3 2 9

DIT 0 1 1 1

NOC 3 0 0 0

CBO 0 1 1 1

LCO

M

2

LI

Metrics

NAC 0 1 1 1

NLM 0 1 2 1

NDC 3 0 0 0

CTA 1 0 0 0

CTM 2 0 1 0

Lorenz

&Kidd

Metrics

CS 6 2 0 2

NOO 0 2 2 3

EMOOSE

MPC 0 3 2 5

DAC 0 2 0 2

NOM 5 2 2 3

 NUS 5 3 2 3

MOOD

MHF 1

AHF 1

MIF 0.54

AIF 0.25

PF 0.46

CF 1

QMOOD

DSC 4

NOH 3

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.1, August 2015

38

DCC 2

NAC 1

NLC 3

ADI 0.7

NOP 2

Reuse

Metrics

Reus

e

ratio

(U)

0.25

Speci

alizati

-on

ratio(

S)

3

 Inher

itanc

e
Depen

denci-

es

(ID)

3

The following points are observed from the Table 2 regarding

the complexity of the java program for EB bill application.

The value of RFC is 9. The maximum value of RFC is high for

the program as it also counts the method invocations.

The values for NOM and WMC are similar as method

complexities are generally considered to be unity.

CBO value is normally less in sample data, hence classes are

easy to understand, reuse and maintain.

DAC has less values representing that the developers has less

tendency to use data abstractions.

MPC is a dynamic measure. It provides more information than

rest of the class coupling measures.

NOM is a subset of RFC and is simple to measure.

LCOM value is 2 because the number of pairs of methods

having access to common attributes is more than the number of

pairs of methods having no common attributes. It mentions that

the classes are cohesive.

The DIT and NOC values are not same in the program; this

shows that less inheritance is used in most of the classes to

optimum level.

The value of AIF is 0.25, suggesting low use of attribute

inheritance.

The MIF value is 0.54. It is observed that there are very less

methods in super classes; they contain only abstract methods that

are overridden in subclasses.

The PF value is 0.46. So it is moderate in our program.

The MHF and AHF values are same. So, all methods or

attributes are private in this program.

The value of CF is 1. It is observed that all classes in this

program are coupled.

It is observed that 4 classes used in the DSC, 3 class hierarchies

in the design, 2 classes are directly coupled in the design, 1

abstract class in the design, 3 leaf classes in design, 2

polymorphic methods used in the design.

The reuse ratio is 0.25. It is also observed from figure 3 that one

super class and 4 classes. The specialization Index is 3. It is also

observed that 3 subclasses and 1 super class.

Figure 4: Analyzed Object Oriented Metrics values for all

classes

The object oriented metrics for all classes are analyzed and

represented in figure 4. It is concluded that the maximum value

of RFC is 9 and the minimum value of DIT, CBO and NAC is 1.

6. CONCLUSION AND FUTURE WORK
This paper clearly explains all the object oriented metrics which

are proposed in the last two decades like CK metrics, MOOD

Metrics, GQM, QMOOD Metrics, MOOSE, LI Metrics, Chen

Metrics, Lorenz and Kidd Metrics, Reuse Metrics, EMOOSE.

The need for such metrics is particularly acute when an

organization is adopting a new technology for which established

practices have yet to be developed. The calculations for each

object oriented metrics are clearly defined. In this research paper

a JAVA Application is taken as a model. The possible metrics

measurements are calculated for the JAVA application. Finally

the measured Object oriented metrics are tabulated and their

results are given.

This research paper helps researchers and software developers to

select the correct object oriented metrics for their models and

applications. Here, the advanced concepts of OOPs like

inheritance, polymorphism, abstraction are used in our example

JAVA Application. The analysis of object oriented metrics for

all classes can be used as a reference by software developers

and managers for building a fault free, reliable and simple to

maintain software product in JAVA In future we can add more

advanced features like Exception – Handling and Reliability of

OOPs concepts in our applications and measure their metrics

values and performances. The man power, time, and cost will be

reduced by using these metrics for developing a Java software

system.

7. REFERENCES
[1] Amjan Shaik, C. R. K. Reddy, Bala Manda, Prakashini. C,

Deepthi. K “ An Empirical Validation of Object Oriented

Design Metrics in Object Oriented Systems”, Journal of

Emerging Trends in Engineering and Applied Sciences

(JETEAS) 1 (2): 216-224c Scholarlink Research Institute

Journals, 2010.

[2] Arti Chhikara, R.S.Chhillar, Sujata Khatri ,”Applying

Object Oriented Metrics to C# Programs”, Int. J. Comp.

Tech. Appl., Vol 2 (3),666-674, 2008.

[3] Gomathi. S, Edith Linda. P, “An Overview of Object

Oriented Metrics A complete Survey”, International Jounal

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.1, August 2015

39

of Computer Science & Engineering Technology, Vol. 4

No.09 Sep 2013.

[4] Website Admin, “Comparison study and Review On Object

Oriented Metrics”, Wednesday, 27 November 2013.

[5] Arti Chhikara and R.S.Chhillar, “ Analyzing the

Complexity of Java Programs using Object Oriented

Software Metrics”, International Journal of Computer

Science Issues, Vol 9, Issue 1, No 3, January 2012.

[6] Amit Sharma, Sanjay Kumar Dubey, “Comparison of

software Quality Metrics for Object-Oriented System”,

International Journal of Computer Science & Management

Studies, Special Issue of Vol. 12, June 2012.

[7] Seyyed Mohsen Jamali, “object oriented metrics”, Software

Assurance Technology Center (SATC), 2006.

[8] K.K.Aggarwal, Yogesh Singh, Arvinder Kaur, Ruchika

Malhotra “Empirical Study of Object Oriented

Metrics”,Journal Of Object Technology,Vol. 5, No. 8,

November-December 2006.

[9] Mei-Huei Tang Ming-Hung Kao Mei-Hwa Chen, “An

Empirical Study on Object-Oriented Metrics”, SUNY at

Albany, Albany, NY 12222, November 1999

[10] Daniel Rodriguez Rachel Harrison, “An Overview of

Object Oriented Design Metrics”, RUCS/2001/TR/A March

2001.

[11] Dr. Rakesh Kumar, Gurvinder Kaur, “Comparing

Complexity in Accordance with ObjectOriented Metrics”,

International Journal of Computer Applications (0975 –

8887) Volume 15– No.8, February 2011.

[12] Jubair J. Al-Ja'afer and Khair Eddin M. Sabri,” Chidamber-

Kemerer (CK) and Lorenz-Kidd(LK) Metrics to Access

Java Programs”, IFAC 2004.

[13] K.P. Srinivasan, Dr T. Devi, “Design and Development of a

Procedure for new Object-Oriented Design Metrics”,

International Journal of Computer Applications (0975 –

8887) Volume 24– No.8, June 2011.

[14] Meenakshi Kandpal and Anmol Kandpal, “ Critical

Analysis of Traditional Size Estimation Metrics for Object

Oriented Programming”, International Journal of Computer

Applications (0975 – 8887) Volume 58– No.13, November

2012.

IJCATM : www.ijcaonline.org

https://globaljournals.org/blog/Website-Admin/

