
International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.1, August 2015

14

Performance Improvement in Multiprocessors using Two

Row Boundary Allocation Method and Online Dynamic

Compaction Algorithm

Akram Reza

Department of Computer Engineering, Shahr-e-
Qods Branch, Islamic Azad University

Tehran, Iran

Mahnaz Rafie

Department of Computer Engineering, Ramhormoz
Branch, Islamic Azad University

Ramhormoz, Iran

ABSTRACT

In this paper, two row boundary (TRB) allocation algorithm

and limited top-down compaction (LT-DC) migration method

are proposed. The first scheme, attempts to allocate the free

nodes in the center of the mesh and decrease the problem of

external fragmentation. The next mechanism use task

migration to improve the performance of existing sub-mesh

allocation strategies. It should be noted that in this process

three key metrics are considered. They are average execution

time, average response time, and average wait time. In fact,

we perform rigorous simulation experiments based on

practical workloads as reported in the literature to quantify all

our proposed schemes and compare them against standard

schemes existing in the literature. Based on the results, we

make clear recommendations on the choice of the strategies.

General Terms

Network on Chip

Keywords

Allocation, Fragmentation, Migration, Two row boundary

1. INTRODUCTION
Network on chip (NoC) is a developing and promising on chip

communication paradigm that improves scalability and

performance of system on chips. NoC design flow contains

many problems from different areas, for example networking,

embedded design and computer architecture [1]. Application

mapping is one of the most important dimensions in NoC

research. It maps the cores of the application to the routers of

the NoC topology, affecting the overall performance and

power requirement of the system [2]. Furthermore, allocation

is used for mapping development. Indeed, for optimal use of

the computing power of a large multicomputer network,

having a processor allocation algorithm is very vital.

Processor allocation is responsible for selecting a set of

processors in order to run parallel work on them. Also,

minimization of allocation time in Grid multi-computers is a

fundamental issue because the main purpose of parallel

execution is to minimize the total time that a task spends upon

the entry to the exit moment in the system. With increase in

system size, time for finding sub-meshes for the allocation to

input task may be equal to the task execution time. Hence,

development of strategies for minimizing search time is very

important. Methods of processor allocation can be divided

into two general categories: continuous and discontinuous. In

continuous allocation methods, a set of free continuous

processors available in the network is allocated to execute the

input task. Allocation method (as shown in [3]) results in high

fragmentation. Excessive fragmentation degrades

performance parameters of the system. In order to resolve the

fragmentation that occurred in the continuous allocation,

discontinuous allocation methods were proposed [4-8].

Discontinuous allocation is able to execute a task on several

sub-meshes smaller than that the input task has requested and

will not wait to release a continuous sub-mesh. It should be

noted that a discontinuous allocation increases the conflicts

between messages in the system. In fact, this strategy can

create an overall traffic that leads to an increase in the

message delay. In this paper, continuous allocation is

considered. Also, task migration is used to solve external

fragmentation of this type of allocation. Indeed, the

continuous allocation algorithm has been designed for two-

dimensional mesh network because it has always been popular

owing to its simplicity, regularity and scalability.

In this article, for the online mapping the following steps have

been done

The first step is to find the appropriate size of sub-mesh for
input task. The second step is to find a sub-mesh place in

integrating the mesh for online task allocation. In addition, the

task migration has been continuously used to solve external

fragmentation in allocation. The third step is to find a main

place in sub-mesh for online task mapping. In order to reduce

the overhead time of online mapping, second and third steps

must be performed simultaneously. These steps will be

discussed in the next sections. At first, previous studies

related to the processor allocation algorithms in mesh

networks will be reviewed. In a review of literature, studies

conducted on improvement in efficiency of allocation and

migration algorithms will be investigated and the manner of

these algorithms performances will be summarized. In part 3,

the proposed algorithm will be described and the manner of

sub-mesh dimensions, allocation and migration of this

algorithm will be exemplified. And finally, the results of the

previous studies are compared from the viewpoint of several

important parameters in performance.

2. REVIEW OF LITERATURE
Definitions and methods of continuous allocation and task

migration used for multi-computers mesh networks have been

reviewed in this section.

2.1 Definitions
A two-dimensional mesh M (w, h) is a rectangle of nodes with

dimensions of w × h where w is width and h is the height of

the rectangle. Each node of mesh is a processor that is known

with the address of its characteristics [9]. A node in column c

and row r has the coordinate of <c, r> where ≤ c < and

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.1, August 2015

15

≤ r < . Node <i , > that is not in borderlines of mesh

approximates and connects directly with other four nodes: <
± 1>, and , ±1 so that 0< < −1 and 0< <ℎ−1. In

borderlines, each node approximates and connects to other

two or three nodes according to its situation.

Definition 2-1-1: two-dimensional sub-mesh S (c, r) in the

mesh M (w, h) is a sub-mesh M (c, r) that 0 ≤ c ≤ and 0 ≤ r

≤ ℎ. When a task requests a sub-mesh with dimensions c × r,

this task is expressed via T (c, r). Address for sub-mesh S is

known by its end and base node that is a four-parameters

variable as < b , b , e , e> where, < b , b > shows the

lower left corner and < e, e> shows the upper right corner of

sub-mesh S. It is clear that c = e – b + 1 and r = e – b + 1

and base node of sub-mesh, is <xb , b> and the sub-mesh area

is the number of nodes inside it that is equal to c×r.

Definition 2-1-2: Busy sub-mesh is a sub-mesh that all its

nodes are assigned to a task at that moment. A set of busy

sub-meshes B is the set that set includes all the busy sub-

meshes available in the mesh that is called busy list. For

example, in figure (1), three busy sub-meshes exist in the

mesh M (6, 6); therefore, = { 1, 2, 3} where 1 =

<4,0,5,2> , 2 = <0,0,2,2>, 3=< 0,3,1,4> are the members of

this set.

Definition 2-1-3:Coverage sub-mesh for busy sub-mesh is

expressed according to the input T that is a sub-mesh that

none of its nodes can be selected as the basis node of a free

sub-mesh for allocation to task T with respect to busy sub-

mesh β,T. Coverage sub-mesh β,T is equal to < s , s , e
, e> for < b, b, e, e> and the task where, s =
max(0, b − c+1) and s = max(0, b − r + 1). A

according to the input task T, coverage set ∁ST is a collection

of coverage sub-meshes for the task T where, ∁ST= {ϑβ,T|β ∈
B}. For example, for the input task T (2, 3) in figure (1), we

have: 1, = <3,0,5,2>، 2, = <0,0,2,2>، 3, =
<0,1,1,4> ،∁ST= {<3,0,5,2> , <0,0,2,2> , <0,1,1,4>}

Definition 2-1-4: According to the input task T, reject sub-

mesh is a sub-mesh including some processors that is a sub-

mesh that none of its processors can be regarded as the basis

node of a free sub-mesh for allocation to task T with respect

to its dimensions. There are two reject sub-meshes for each T:

horizontal () and () vertical. It is simple to calculate

them i.e. = <r′, 0, , ℎ> and = <0, c′, , ℎ> and r′ =
 - c + 1 c′ = ℎ - r + 1 where, × ℎ is sub-mesh size. A

set of reject sub-meshes Δ is calculated by adding and

 . For example, = <0,4,5,5> and = <5,0,5,5> in

figure (1).

Figure 1 An example of allocation for T (2, 3)

2.2 Processor Allocation
Continuous allocation has been proposed for mesh

multicomputer networks. In this approach, the tasks of an

application are mapped onto a set of adjacent nodes which

results in lower communication overhead. However, the main

problem of this approach is the lower system utilization, since

an application has to wait for a properly sized and shaped

contiguous sub-mesh, while there may be sufficient number of

free processors in non-contiguous regions. Scientists have

extensively investigated contiguous allocation for two-

dimensional (2D) mesh multicomputer [10–13]. In most

previous studies, they have focused on reducing the effects of

external fragmentation that are caused by the contiguous

allocation strategies. Hereinafter, contiguous processor

allocation schemes include a wide range of methods such as

stack-based allocation [14, 15], adjacency allocation [15],

adaptive scan allocation [12], and best/first fit allocation [13,

16].

2.2.1 Stack Based Allocation (SBA)
SBA has complete sub-mesh recognition ability by

manipulating the orientation of each sub-mesh request. The

key idea of this method is in the logic of finding a free sub-

mesh for the request with a fixed orientation. Whereas, this

logic is invoked twice at most, once for each orientation. It

should be noted that implementing the candidate list as a stack

for increasing the speed of search is the key idea of this

algorithm. It has better speed and efficiency compared to the

other methods. Time complexity of this algorithm is O(Na
2),

where Na is the number of busy sub-meshes [14].

2.2.2 Improved Stack Based Allocation (ISBA)
ISBA uses manipulating of job orientation to obtain complete

sub-mesh recognition ability. However, when job J(p,q) has

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.1, August 2015

16

both p and q sizes equal (p=q) there is no need to change job

orientation. Using stack as a storage for candidate blocks,

algorithm returns first found base block as a result. In [17],

three allocation algorithms are compared: SBA, ISBA and

Frame Sliding Algorithm (FS). Moreover, Simulation results

show that ISBA is more efficient in most cases in comparison

with the other algorithms.

2.3 Task Migration
Task migration problem has also been widely studied in the

literature [18-20]. An important issue in task migration is

minimizing the collision between migration traffic and the

normal traffic generated by the applications [21]. In this

section, a few task migration strategies that are used in mesh

multi-computers will be described. Methods like General Task

Migration Scheme (G-TMS) and Near-Optimal Task

Migration Scheme (NOTMS) try to minimize the traffic

collision between the migration packets and the normal

application packets and also among different migration

packets in a wormhole switched multi-computer by sending

the migration data in a multi-phase procedure [22]. In [23], a

diagonal scheme is presented. The contribution of this

algorithm is finding separate ways to move a task from the

source sub-mesh to the destination sub-mesh on the basis of

the X-Y routing. In [24], two strategies are introduced. They

are Online Dynamic Compaction-Single Corner (ODC-SC)

and Online Dynamic Compaction-Four Corner (ODC-FC).

The ODC-SC tries to find the destination to move a sub-mesh

in such a way that a larger free fragment of processors are

obtained. Indeed, ODC-FC is more optimized version of

ODC-SC that gives a larger region of adjacent free nodes by

more selectively moving the tasks. Also, these methods

prevent external fragmentation in the system. By this

algorithm, there will be a larger contiguous area of free nodes

after migration as compared to the previous schemes. Really,

experiments show that this strategy is particularly useful in

yielding better performance.

2.4 Simulation Output Interpretation
Following is three parameters used in our discussion below:

2.4.1 Mean Task Response Time (MTRT):
The response time is the time from the submission of request

until the first real response produced for tasks [25, 26].

2.4.2 Mean Task Execution Time (MTET)
The execution time of a parallel task is the time from the

allocation of the task’s request until the moment the parallel

task finishes execution [25].

2.4.3 Mean Task Waiting Time (MTWT)
The waiting time is the time interval between the instant when

a task arrives and when it is allocated [27].

3. OVERVIEW OF THE PROPOSED

APPROACH
Three steps are considered in the proposed method as follows:

3.1 Calculation of the Appropriate Size of

Sub Mesh for Input Task
 The following algorithm can be considered to calculate the

appropriate size of sub-mesh in continuous allocation:

3.1.1 Decrease Loss by Minimum Diameter (MD)
The minimum diameter is considered in this method. For

example if core count is equal to nine, the sub mesh has three

rows and three columns by this method. The algorithm is

shown in figure 2.

Based on number of cores needed for job

Make array of right products of core count as row and

column

Find one element of array with min row and column

Return (row, column);

Figure 2: MD Algorithm

3.2 Proposed Task Allocation Method
3.2.1 Two Row Boundary (TRB) Allocation

Algorithm
In this strategy, selection of end node is different. It is

calculated base on the base node and task size (p×q). It is

shown by equation (4).

qybasenodeyendnode

pxbasenodexendnode

ii

ii

..

..

 (4)

In this method, if there is more than one base node, a sub-

mesh will be selected that its base node has minimum distance

from the top and down points of mesh as well as minimum

free connectivity. Equation 4, 5 are used to calculate the base

and end nodes’ distance of a sub-mesh from boundaries. The

mesh size is considered m×n.

).minmin(.

).,.min(.min

..

0..

i

iii

ii

ii

dalldm

xexbd

xendnodemxe

xbasenodexb

 (5)

In this way the allocation of free nodes are kept in the middle

of the mesh which is shown in figure 3. Thus, the problem of

external fragmentation can be minimized.

Figure 3: TRB allocation algorithm

The proposed TRB allocation algorithm is organized as

follows:

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.1, August 2015

17

TRB Allocation Algorithm

If (number of free nodes less than needed nodes)

then

 Job must be waiting

else

Create CJ with respect to J (p,q) and

J(q,p) based on busy list and create RJ

Create base node list based on (mesh –

(CJ υ RJ))

 end if

If (numbers of based node == 0)then

 Job must be waiting// external

fragmentation

else if (numbers of based node == 1)then

 Allocate job on available base node

else ///numbers of base node more than one

 Select base node with min diameter

Figure 4. Pseudo code of TRB allocation algorithm

3.3 Proposed Task Migration Method
In most previous studies, they have focused on reducing the

effects of external fragmentation that are caused by the

contiguous allocation strategies. In fact, external

fragmentation occurs when the number of free nodes exceeds

the number of nodes required for task, but no base node can

be obtained for it. To solve this problem the migration

algorithms have been proposed.

3.3.1 Limited Top-Down Compaction (LT-DC)

Migration Algorithm
The proposed migration algorithm is derived from the ODC-

FC method. For example, instead of a task to the top left

corner or the top right corner of the mesh, only to be driven

upward. Similarly, instead of a lower left corner or the lower

right corner of the task, only to be driven down.

3.4 Task Mapping
After determining the mesh size for allocation, mapping

algorithm and allocation algorithm can be run simultaneously.

In this case, based on the output of the allocation function that

is coordinates of the base node, and using the output of

mapping function that is the coordinates of mapping nodes,

the position of each nodes on the mesh can be achieved.

It is sufficient to sum the coordinate of each mapping function

of output node with the coordinate of base node to gain real

coordinate node of the mesh. After mapping task on the

selected nodes of sub-mesh, the given task starts to run. The

task will be put on a waiting list if the allocation function fails

to allocate sub-mesh to input task, (low number of free nodes

or external fragmentation problem). The output of the

mapping algorithm is stored in the memory to use sub-mesh

allocated to the given task. In this step, each mapping function

can be used which in this paper random mapping function is

used.

3.5 Simulation Results
For evaluation the proposed algorithm, we implement OM-

simulator developed by C#, this simulator has three phase of

on line mapping, allocation, migration (in non-preemptive

allocation) and mapping. Simulator configuration is based on

task parameter (task type, task size, task lifetime and task

arrival time), network parameter (network size,

communication rate), number of task and total time of the

simulation.

The proposed algorithm has been compared with similar

known algorithms. In the first phase, TRB allocation

algorithm has been compared with the ISBA allocation

algorithm. In the second phase, LT-DC migration algorithm

has been compared with the ODC-FC migration algorithm. In

addition, different random tasks of random size, time of

arrival and the processing time is considered. Indeed, the

proposed method with three different sub-mesh models has

been implemented in the OM simulator. It should be noted

that the same traffic applied to all simulation conditions. As

can be seen in Figure 5, MD / TRB / ODC-FC (Dimensions of

sub mesh / allocation / migration) method has the lowest

average execution time.

Table 1: simulation configuration, OM simulator

Simulation Parameter Value

NoC size 16×16

Communication rate 1 to 1000 bit/s

task type Video & media

task size Random between 9 to 32 core

task lifetime Random between 100,000 and 1000,000

task arrival time Random between 0 and 300,000

Total time of the simulation 20 million cycles

Number of tasks Random between 50 and 200

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.1, August 2015

18

Figure 5: Average execution time for tasks considering different dimensions of sub mesh/allocation/migration schemes

Average task response time for traffic patterns that mentioned

above is displayed in figure 6. As can be seen in this graph,

MD / TRB / ODC-FC has the lowest average response time

compared to other designs.

Figure 6: Average response time for tasks considering different dimensions of sub mesh/allocation/migration scheme

The average waiting time for all online mapping plans to

input tasks on the mesh topology with network size of 16

× 16 is shown in figure 7. As can be seen the MD / TRB /

ODC-FC has the least waiting time.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

ISBA/... TRB/LT-DC TRB/ODC-FC

A
ve

ra
ge

 R
u

n
 T

im
e

(c
yc

le
)

MD

0

500

1000

1500

2000

2500

3000

3500

4000

ISBA/... TRB/LT-DC TRB/ODC-FC

A
ve

ra
ge

 R
es

p
o

n
se

 T
im

e
(c

yc
le

)

MD

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.1, August 2015

19

Figure 7: Average wait time for tasks considering different dimensions of sub mesh/allocation/migration scheme

4. CONCLUSION
Three concepts are considered in the proposed algorithm.

They are the dimensions of sub mesh, allocation, and

migration. Dimensions of sub mesh are considered by MD

method. The proposed allocation mechanism is TRB strategy.

And the proposed migration algorithm is LT-DC method. It

should be noted that the proposed mechanism has been

compared with similar known algorithms. They are ISBA

allocation algorithm and ODC-FC migration method. Also,

three parameters are considered. They are average execution

time, average response time and average waiting time. Results

of simulation show that MD / TRB / ODC-FC (Dimensions of

sub mesh / allocation / migration) method with respect to

these three parameters have better performance.

5. REFERENCES
[1] C. Celik, and C. F. Bazlamacci, “Effect of application

mapping on network on chip performance”, in

Proceedings of the 20th Euromicro International

Conference on Parallel, Distributed and Network-Based

Processing (PDP), pp. 465-472, 2012.

[2] P. K. Sahu, and S. Chattopadhyay, “A survey on

application mapping strategies for Network-on-Chip

design”, in Proceedings of the Journal of Systems

Architecture, Vol. 59, No. 1, pp. 60-76, 2013.

[3] Y. Zhu, “Efficient processor allocation strategies for

mesh-connected parallel computers”, in Proceedings of

the Journal of Parallel and Distributed Computing, pp.

328-337, 1992.

[4] S. Bani-Mohammad, M. Ould-Khaoua, and I. Ababneh,

“A new processor allocation strategy with a high degree

of contiguity in mesh-connected multicomputers”,

Simulation Modelling Practice and Theory, pp. 465-480,

2007.

[5] V. Lo, K. Windisch, W. Liu, and B. Nitzberg, “Non-

contiguous processor allocation algorithms for mesh-

connected multicomputers”, in Proceedings of the IEEE

Transactions on Parallel and Distributed Systems, pp.

712-726, 1997.

[6] C. Peterson, J. Sutton, and P. Wiley, “iWARP: a 100-

POS, LIW microprocessor for multicomputers”, in

Proceedings of the IEEE Micro, pp. 26-29, 1991.

[7] M. Levine, CRAY XT3 at the Pittsburgh

Supercomputing Centre, DEISA Symposium, Bologna, 4-

5 May 2006.

[8] W. Mao, J. Chen, and W. Watson, Efficient Subtorus

Processor Allocation in a Multi-Dimensional Torus,

Proceedings of the 8th International Conference on

High-Performance Computing in Asia-Pacific Region

(HPCASIA’05), IEEE Computer society Press, pp. 53-60,

30 November - 3 December, 2005

[9] J. Ding, and L.N. Bhuyan, “An adaptive submesh

allocation strategy for two dimensional mesh connected

systems”, in Proceedings of the International Conference

on Parallel Processing (ICPP), Vol. 2, pp. 193–200,

1993.

[10] K. Li, and K. Cheng, “A two-dimensional buddy system

for dynamic resource allocation in a partitionable mesh

connected system”, in Proceedings of the Journal of

Parallel and Distributed Computing, Vol. 12, No. 1, pp.

79–83, May 1991.

[11] P. Chuang, and N. Tzeng, “An efficient submesh

allocation strategy for mesh computer systems”, in

Proceedings of the 11th International Conference on

Distributed Computing Systems, pp. 256–263, 1991.

[12] J. Ding, and L.N. Bhuyan, “An adaptive submesh

allocation strategy for two dimensional mesh connected

systems”, in Proceedings of the International Conference

on Parallel Processing (ICPP), Vol. 2, pp. 193–200,

1993.

[13] Y. Zhu, “Efficient processor allocation strategies for

mesh-connected parallel computers”, in Proceedings of

0

500

1000

1500

2000

2500

3000

3500

4000

ISBA/... TRB/LT-DC TRB/ODC-FC

A
ve

ra
ge

 W
ai

t
Ti

m
e

(c
yc

le
)

MD

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.1, August 2015

20

the Journal of Parallel and Distributed Computing, Vol.

16, No. 4, pp. 328–337, December 1992.

[14] B. S. Yoo, and C. R. Das, “a fast and efficient processor

allocation scheme for mesh-connected multicomputers”,

in Proceedings of the IEEE transactions on computers,

Vol. 51, No. 1, pp. 46-60, January, 2002.

[15] D.D. Sharma, and D.K. Pradhan, “A fast and efficient

strategy for submesh allocation in mesh-connected

parallel computers”, in Proceedings of the Fifth IEEE

Symposium on Parallel and Distributed Processing, pp.

682–689, December 1993.

[16] Z.M. Al-Lami, “Communication Impact on Non-

Contiguous Allocation Strategies for 2-D Mesh

Multicomputer Systems”, Master Thesis, Middle East

University, Amman-Jordan, May 2011.

[17] G. Chmaj, D. Zydek, and L. Koszalka, Allocation

Algorithms Problems in Mesh-Connected Systems, 2004.

[18] A. Kelly, and J. D. William, “Migration in single chip

multiprocessors”, in Proceedings of the IEEE Computer

Architecture Letters, 1, 2002.

[19] M. Kandemir, and G. Chen, “Locality-aware process

scheduling for embedded MPSoCs”, in Proceedings of

the Design, Automation and Test in Europe Conference

(DATE), pp. 870–875, 2005.

[20] S. Bertozzi, A. Acquaviva, D. Bertozzi, and A. Poggiali,

“Supporting task migration in multi-processor systems-

on-chip: a feasibility study”, in Proceedings of the

Design, Automation and Test in Europe (DATE), pp. 15–

20, Vol. 1, March 2006.

[21] B. Goudarzi, and H. Sarbazi-Azad, “Task migration in

mesh NoCs over virtual point to point connections”, in

Proceedings of the 19th Euromicro International

Conference on Parallel, Distributed and Network-Based

Processing (PDP), pp. 463–469, 2011.

[22] N.C. Wang, and T.S. Chen, “Task migration in all-port

wormhole-routed 2D mesh multicomputers”, in

Proceedings of the Seventh International Symposium on

Parallel Architectures, Algorithms, and Networks, pp.

123–128, 2004.

[23] T. S. Chen, “Task migration in 2D wormhole-routed

mesh multicomputers”, in Proceedings of the Journal of

Information Processing Letters, pp. 103–110, Vol. 73,

No. 3-4, 2000.

[24] L. K. Goh, and B. Veeravalli, “Design and performance

evaluation of combined first-fit task allocation and

migration strategies in mesh multicomputer systems”, in

Proceedings of the Journal of Parallel Computing, pp.

508–520, Vol. 34, No. 9, September 2008.

[25] S. Bani-Ahmad, “On Improved Processor Allocation in

2D Mesh-based Multicomputers: Controlled Splitting of

Parallel Requests”, in Proceedings of the 2011

International Conference on Communication, Computing

and Security (ICCCS'11), pp. 204-209, 2011.

[26] Z.M. Al-Lami, “Communication Impact on Non-

Contiguous Allocation Strategies for 2-D Mesh

Multicomputer Systems”, Master Thesis, Middle East

University, Amman-Jordan, May 2011.

[27] G. L. Kee, “Design and performance evaluation of

migration-based submesh allocation strategies in mesh

multicomputers”, Master Thesis, National University of

Singapore, 2005.

IJCATM : www.ijcaonline.org

