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ABSTRACT 

In this paper, two row boundary (TRB) allocation algorithm 

and limited top-down compaction (LT-DC) migration method 

are proposed. The first scheme, attempts to allocate the free 

nodes in the center of the mesh and decrease the problem of 

external fragmentation. The next mechanism use task 

migration to improve the performance of existing sub-mesh 

allocation strategies. It should be noted that in this process 

three key metrics are considered. They are average execution 

time, average response time, and average wait time. In fact, 

we perform rigorous simulation experiments based on 

practical workloads as reported in the literature to quantify all 

our proposed schemes and compare them against standard 

schemes existing in the literature. Based on the results, we 

make clear recommendations on the choice of the strategies. 
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1. INTRODUCTION 
Network on chip (NoC) is a developing and promising on chip 

communication paradigm that improves scalability and 

performance of system on chips. NoC design flow contains 

many problems from different areas, for example networking, 

embedded design and computer architecture [1]. Application 

mapping is one of the most important dimensions in NoC 

research. It maps the cores of the application to the routers of 

the NoC topology, affecting the overall performance and 

power requirement of the system [2]. Furthermore, allocation 

is used for mapping development. Indeed, for optimal use of 

the computing power of a large multicomputer network, 

having a processor allocation algorithm is very vital. 

Processor allocation is responsible for selecting a set of 

processors in order to run parallel work on them. Also, 

minimization of allocation time in Grid multi-computers is a 

fundamental issue because the main purpose of parallel 

execution is to minimize the total time that a task spends upon 

the entry to the exit moment in the system. With increase in 

system size, time for finding sub-meshes for the allocation to 

input task may be equal to the task execution time. Hence, 

development of strategies for minimizing search time is very 

important. Methods of processor allocation can be divided 

into two general categories: continuous and discontinuous. In 

continuous allocation methods, a set of free continuous 

processors available in the network is allocated to execute the 

input task. Allocation method (as shown in [3]) results in high 

fragmentation. Excessive fragmentation degrades 

performance parameters of the system. In order to resolve the 

fragmentation that occurred in the continuous allocation, 

discontinuous allocation methods were proposed [4-8]. 

Discontinuous allocation is able to execute a task on several 

sub-meshes smaller than that the input task has requested and 

will not wait to release a continuous sub-mesh. It should be 

noted that a discontinuous allocation increases the conflicts 

between messages in the system. In fact, this strategy can 

create an overall traffic that leads to an increase in the 

message delay. In this paper, continuous allocation is 

considered. Also, task migration is used to solve external 

fragmentation of this type of allocation. Indeed, the 

continuous allocation algorithm has been designed for two-

dimensional mesh network because it has always been popular 

owing to its simplicity, regularity and scalability.  

In this article, for the online mapping the following steps have 

been done 

The first step is to find the appropriate size of sub-mesh for 
input task. The second step is to find a sub-mesh place in 

integrating the mesh for online task allocation. In addition, the 

task migration has been continuously used to solve external 

fragmentation in allocation. The third step is to find a main 

place in sub-mesh for online task mapping. In order to reduce 

the overhead time of online mapping, second and third steps 

must be performed simultaneously. These steps will be 

discussed in the next sections. At first, previous studies 

related to the processor allocation algorithms in mesh 

networks will be reviewed. In a review of literature, studies 

conducted on improvement in efficiency of allocation and 

migration algorithms will be investigated and the manner of 

these algorithms performances will be summarized. In part 3, 

the proposed algorithm will be described and the manner of 

sub-mesh dimensions, allocation and migration of this 

algorithm will be exemplified. And finally, the results of the 

previous studies are compared from the viewpoint of several 

important parameters in performance. 

2. REVIEW OF LITERATURE  
Definitions and methods of continuous allocation and task 

migration used for multi-computers mesh networks have been 

reviewed in this section. 

2.1 Definitions 
A two-dimensional mesh M (w, h) is a rectangle of nodes with 

dimensions of w × h where w is width and h is the height of 

the rectangle. Each node of mesh is a processor that is known 

with the address of its characteristics [9]. A node in column c 

and row r has the coordinate of <c, r> where   ≤ c <   and   
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≤ r <  . Node <i ,  > that is not in borderlines of mesh 

approximates and connects directly with other four nodes: <  
± 1>,   and  ,  ±1 so that 0< < −1 and 0< <ℎ−1. In 

borderlines, each node approximates and connects to other 

two or three nodes according to its situation. 

Definition 2-1-1: two-dimensional sub-mesh S (c, r) in the 

mesh M (w, h) is a sub-mesh M (c, r) that 0 ≤ c ≤   and 0 ≤ r 

≤ ℎ. When a task requests a sub-mesh with dimensions c × r, 

this task is expressed via T (c, r). Address for sub-mesh S is 

known by its end and base node that is a four-parameters 

variable as < b ,  b ,  e ,  e> where, <  b ,  b > shows the 

lower left corner and < e,  e> shows the upper right corner of 

sub-mesh S. It is clear that c =  e –  b + 1 and r =  e –  b + 1 

and base node of sub-mesh, is <xb ,  b> and the sub-mesh area 

is the number of nodes inside it that is equal to c×r. 

Definition 2-1-2: Busy sub-mesh   is a sub-mesh that all its 

nodes are assigned to a task at that moment. A set of busy 

sub-meshes B is the set that set includes all the busy sub-

meshes available in the mesh that is called busy list. For 

example, in figure (1), three busy sub-meshes exist in the 

mesh M (6, 6); therefore,   = { 1,  2,  3} where  1 = 

<4,0,5,2> ,  2 = <0,0,2,2>,  3=< 0,3,1,4> are the members of 

this set. 

Definition 2-1-3:Coverage sub-mesh for busy sub-mesh   is 

expressed according to the input T that is a sub-mesh that 

none of its nodes can be selected as the basis node of a free 

sub-mesh for allocation to task T with respect to busy sub-

mesh  β,T. Coverage sub-mesh  β,T is equal to <  s ,   s ,  e 
, e> for  < b,  b,  e,  e> and the task   where,   s = 
max(0,  b − c+1) and   s = max(0,  b − r + 1). A 

according to the input task T, coverage set ∁ST is a collection 

of coverage sub-meshes for the task T where, ∁ST= {ϑβ,T|β ∈ 
B}. For example, for the input task T (2, 3) in figure (1), we 

have:   1,  = <3,0,5,2>،   2,  = <0,0,2,2>،   3,  = 
<0,1,1,4> ،∁ST= {<3,0,5,2> , <0,0,2,2> , <0,1,1,4>} 

Definition 2-1-4: According to the input task T, reject    sub-

mesh is a sub-mesh including some processors that is a sub-

mesh that none of its processors can be regarded as the basis 

node of a free sub-mesh for allocation to task T with respect 

to its dimensions. There are two reject sub-meshes for each T: 

horizontal (   ) and (   ) vertical. It is simple to calculate 

them i.e.     = <r′, 0,  , ℎ> and     = <0, c′,  , ℎ> and r′ = 
  - c + 1     c′ = ℎ - r + 1 where,   × ℎ is sub-mesh size. A 

set of reject sub-meshes Δ  is calculated by adding     and 

   . For example,     = <0,4,5,5> and     = <5,0,5,5> in 

figure (1). 

 

 

Figure 1 An example of allocation for T (2, 3) 

2.2 Processor Allocation 
Continuous allocation has been proposed for mesh 

multicomputer networks. In this approach, the tasks of an 

application are mapped onto a set of adjacent nodes which 

results in lower communication overhead. However, the main 

problem of this approach is the lower system utilization, since 

an application has to wait for a properly sized and shaped 

contiguous sub-mesh, while there may be sufficient number of 

free processors in non-contiguous regions. Scientists have 

extensively investigated contiguous allocation for two-

dimensional (2D) mesh multicomputer [10–13]. In most 

previous studies, they have focused on reducing the effects of 

external fragmentation that are caused by the contiguous 

allocation strategies. Hereinafter, contiguous processor 

allocation schemes include a wide range of methods such as 

stack-based allocation [14, 15], adjacency allocation [15], 

adaptive scan allocation [12], and best/first fit allocation [13, 

16]. 

2.2.1 Stack Based Allocation (SBA)  
SBA has complete sub-mesh recognition ability by 

manipulating the orientation of each sub-mesh request. The 

key idea of this method is in the logic of finding a free sub-

mesh for the request with a fixed orientation. Whereas, this 

logic is invoked twice at most, once for each orientation. It 

should be noted that implementing the candidate list as a stack 

for increasing the speed of search is the key idea of this 

algorithm. It has better speed and efficiency compared to the 

other methods. Time complexity of this algorithm is O(Na
2), 

where Na is the number of busy sub-meshes [14].  

2.2.2 Improved Stack Based Allocation (ISBA)  
ISBA uses manipulating of job orientation to obtain complete 

sub-mesh recognition ability. However, when job J(p,q) has 
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both p and q sizes equal (p=q) there is no need to change job 

orientation. Using stack as a storage for candidate blocks, 

algorithm returns first found base block as a result. In [17], 

three allocation algorithms are compared: SBA, ISBA and 

Frame Sliding Algorithm (FS). Moreover, Simulation results 

show that ISBA is more efficient in most cases in comparison 

with the other algorithms. 

2.3 Task Migration 
Task migration problem has also been widely studied in the 

literature [18-20]. An important issue in task migration is 

minimizing the collision between migration traffic and the 

normal traffic generated by the applications [21]. In this 

section, a few task migration strategies that are used in mesh 

multi-computers will be described. Methods like General Task 

Migration Scheme (G-TMS) and Near-Optimal Task 

Migration Scheme (NOTMS) try to minimize the traffic 

collision between the migration packets and the normal 

application packets and also among different migration 

packets in a wormhole switched multi-computer by sending 

the migration data in a multi-phase procedure [22]. In [23], a 

diagonal scheme is presented. The contribution of this 

algorithm is finding separate ways to move a task from the 

source sub-mesh to the destination sub-mesh on the basis of 

the X-Y routing. In [24], two strategies are introduced. They 

are Online Dynamic Compaction-Single Corner (ODC-SC) 

and Online Dynamic Compaction-Four Corner (ODC-FC). 

The ODC-SC tries to find the destination to move a sub-mesh 

in such a way that a larger free fragment of processors are 

obtained. Indeed, ODC-FC is more optimized version of 

ODC-SC that gives a larger region of adjacent free nodes by 

more selectively moving the tasks. Also, these methods 

prevent external fragmentation in the system. By this 

algorithm, there will be a larger contiguous area of free nodes 

after migration as compared to the previous schemes. Really, 

experiments show that this strategy is particularly useful in 

yielding better performance. 

2.4 Simulation Output Interpretation 
Following is three parameters used in our discussion below: 

2.4.1 Mean Task Response Time (MTRT):  
The response time is the time from the submission of request 

until the first real response produced for tasks [25, 26]. 

2.4.2 Mean Task Execution Time (MTET)  
The execution time of a parallel task is the time from the 

allocation of the task’s request until the moment the parallel 

task finishes execution [25].  

2.4.3 Mean Task Waiting Time (MTWT)  
The waiting time is the time interval between the instant when 

a task arrives and when it is allocated [27].  

3. OVERVIEW OF THE PROPOSED 

APPROACH 
Three steps are considered in the proposed method as follows: 

3.1 Calculation of the Appropriate Size of 

Sub Mesh for Input Task 
 The following algorithm can be considered to calculate the 

appropriate size of sub-mesh in continuous allocation: 

3.1.1 Decrease Loss by Minimum Diameter (MD) 
The minimum diameter is considered in this method. For 

example if core count is equal to nine, the sub mesh has three 

rows and three columns by this method. The algorithm is 

shown in figure 2. 

 

 

Based on number of cores needed for job 

Make array of right products of core count as row and 

column 

Find one element of array with min row and column 

Return (row, column); 

 

Figure 2: MD Algorithm 

3.2 Proposed Task Allocation Method 
3.2.1 Two Row Boundary (TRB) Allocation 

Algorithm 
In this strategy, selection of end node is different. It is 

calculated base on the base node and task size (p×q). It is 

shown by equation (4). 
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In this method, if there is more than one base node, a sub-

mesh will be selected that its base node has minimum distance 

from the top and down points of mesh as well as minimum 

free connectivity. Equation 4, 5 are used to calculate the base 

and end nodes’ distance of a sub-mesh from boundaries. The 

mesh size is considered m×n. 
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In this way the allocation of free nodes are kept in the middle 

of the mesh which is shown in figure 3. Thus, the problem of 

external fragmentation can be minimized.  

 

Figure 3: TRB allocation algorithm 

The proposed TRB allocation algorithm is organized as 

follows: 
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TRB Allocation Algorithm 

If (number of free nodes less than needed nodes) 

then 

  Job must be waiting 

else 

Create CJ with respect to J (p,q) and 

J(q,p)  based on busy list and create RJ 

Create base node list based on (mesh – 

(CJ υ RJ)) 

 end if 

If (numbers of based node == 0)then  

  Job must be waiting// external 

fragmentation 

else if (numbers of based node == 1)then 

  Allocate job on available base node   

else    ///numbers of base node more than one 

  Select base node with min diameter 

Figure 4. Pseudo code of TRB allocation algorithm 

3.3 Proposed Task Migration Method 
In most previous studies, they have focused on reducing the 

effects of external fragmentation that are caused by the 

contiguous allocation strategies. In fact, external 

fragmentation occurs when the number of free nodes exceeds 

the number of nodes required for task, but no base node can 

be obtained for it. To solve this problem the migration 

algorithms have been proposed. 

3.3.1 Limited Top-Down Compaction (LT-DC) 

Migration Algorithm 
The proposed migration algorithm is derived from the ODC-

FC method. For example, instead of a task to the top left 

corner or the top right corner of the mesh, only to be driven 

upward. Similarly, instead of a lower left corner or the lower 

right corner of the task, only to be driven down. 

3.4 Task Mapping 
After determining the mesh size for allocation, mapping 

algorithm and allocation algorithm can be run simultaneously. 

In this case, based on the output of the allocation function that 

is coordinates of the base node, and using the output of 

mapping function that is the coordinates of mapping nodes, 

the position of each nodes on the mesh can be achieved. 

It is sufficient to sum the coordinate of each mapping function 

of output node with the coordinate of base node to gain real 

coordinate node of the mesh. After mapping task on the 

selected nodes of sub-mesh, the given task starts to run. The 

task will be put on a waiting list if the allocation function fails 

to allocate sub-mesh to input task, (low number of free nodes 

or external fragmentation problem). The output of the 

mapping algorithm is stored in the memory to use sub-mesh 

allocated to the given task. In this step, each mapping function 

can be used which in this paper random mapping function is 

used. 

3.5 Simulation Results 
For evaluation the proposed algorithm, we implement OM-

simulator developed by C#, this simulator has three phase of 

on line mapping, allocation, migration (in non-preemptive 

allocation) and mapping. Simulator configuration is based on 

task parameter (task type, task size, task lifetime and task 

arrival time), network parameter (network size, 

communication rate), number of task and total time of the 

simulation. 

The proposed algorithm has been compared with similar 

known algorithms. In the first phase, TRB allocation 

algorithm has been compared with the ISBA allocation 

algorithm. In the second phase, LT-DC migration algorithm 

has been compared with the ODC-FC migration algorithm. In 

addition, different random tasks of random size, time of 

arrival and the processing time is considered. Indeed, the 

proposed method with three different sub-mesh models has 

been implemented in the OM simulator. It should be noted 

that the same traffic applied to all simulation conditions. As 

can be seen in Figure 5, MD / TRB / ODC-FC (Dimensions of 

sub mesh / allocation / migration) method has the lowest 

average execution time. 

Table 1: simulation configuration, OM simulator 

Simulation Parameter Value 

NoC size 16×16 

Communication rate 1 to 1000 bit/s 

task type Video & media 

task size Random between 9 to 32 core 

task lifetime Random between 100,000 and 1000,000 

task arrival time Random between 0 and 300,000 

Total time of the simulation 20 million cycles 

Number of tasks Random between 50 and 200 
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Figure 5: Average execution time for tasks considering different dimensions of sub mesh/allocation/migration schemes 

Average task response time for traffic patterns that mentioned 

above is displayed in figure 6. As can be seen in this graph, 

MD / TRB / ODC-FC has the lowest average response time 

compared to other designs. 

 

 

 

Figure 6: Average response time for tasks considering different dimensions of sub mesh/allocation/migration scheme 

The average waiting time for all online mapping plans to 

input tasks on the mesh topology with network size of 16 

× 16 is shown in figure 7. As can be seen the MD / TRB / 

ODC-FC has the least waiting time. 
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Figure 7: Average wait time for tasks considering different dimensions of sub mesh/allocation/migration scheme 

4. CONCLUSION 
Three concepts are considered in the proposed algorithm. 

They are the dimensions of sub mesh, allocation, and 

migration. Dimensions of sub mesh are considered by MD 

method. The proposed allocation mechanism is TRB strategy. 

And the proposed migration algorithm is LT-DC method. It 

should be noted that the proposed mechanism has been 

compared with similar known algorithms. They are ISBA 

allocation algorithm and ODC-FC migration method. Also, 

three parameters are considered. They are average execution 

time, average response time and average waiting time. Results 

of simulation show that MD / TRB / ODC-FC (Dimensions of 

sub mesh / allocation / migration) method with respect to 

these three parameters have better performance.   
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