
International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.11, August 2015

1

Fuzzy Lexical Analyser: Design and Implementation

Vaishali Bhosale

Assistant Director/ Assistant Professor
YCSRD,

Shivaji University, Kolhapur

S.R. Chaudhari
Professor and Head

Dept. Of Mathematics, North Maharashtra
University, Jalgaon

ABSTRACT

The aim of this paper is to handle the errors, due to insertion,

deletion, substitution, letter sequencing and typing in the

lexical analysis phase of compiler. Fuzzy keywords, their

fuzzy regular expressions and minimized fuzzy deterministic

automaton are constructed. The issue of membership of fuzzy

keyword is successfully tackled with the help of an algorithm.

Full implementation of fuzzy lexical analyzer is also

described.

Keywords

Fuzzy lexical analysis, Fuzzy finite automata, Fuzzy regular

expression, Fuzzy tokens, Tiny compiler.

1. INTRODUCTION
Lexical analysis is a very important phase of a compiler that

has the task of reading the source program character by

character and separating it into tokens such as keywords,

identifiers, special symbols, operators etc. [1]. Lexical

analysis is also a special case of pattern matching that uses

regular expressions and finite automata methods for string

matching. A string is either a token or a non-token, and hence

there is no middle possibility [2]. In traditional lexical
analysis every token belongs to one and only one type viz.

keywords, identifier, operators etc. with default membership

value as 1. Whereas in fuzzy lexical analysis a token may
belong to more than one token type with varying degree of

membership in [0, 1].

In „C‟ programming language, if you type “integer” (due to

substitution) it does not mean that it is the keyword “int” to

the compiler, but it is treated as an identifier only. If you type

“inttt” (an insertion error may be due to the key sticks), again

it will also not treated as “int”. If you type “flot” it does not

mean “float” to the compiler but as an identifier only (deletion

error). Also if you type “vhar” it does not mean “char” to the

compiler (a typing error). If you type “lese” it does not mean

“else” to the compiler (letter sequencing error). Similarly if

you type “wlse” due to tying error, it does not mean “else” to

compiler.

Would it be more friendly if the compiler will simply decide

for you “int” in first two cases, “float” in the third case and

will it ask you whether you meant “char” in forth case and

“else” in last two cases? The answer probably would be „no‟

with existing compilers. Fuzzy lexical analysis will make it

possible.

It means that the substitution, deletion, insertion, letter

sequencing and typing errors are not allowed for keyword in

crisp compiler. Due to the attempts by [2,3, 4] it is clear that

the concept of fuzzy automata studied by many authors

[5,6,7,8,9] will provide an appropriate framework to model

such situations. This paper intended to address the problem of

fuzzy token recognition. A fuzzy token is a sequence of

characters which can have one or more of the errors due to

insertion, deletion, letter sequencing and typing errors. Here,

fuzzy automata model used for accepting fuzzy tokens and

Tiny compiler considered for implementation.

2. PRELIMINARY
Regular languages are represented by regular expressions and

they are analyzed by lexical analysis. The model of lexical

analysis is shown in the following Figure 1. [10]

Figure 1

The lexical analysis is also known as scanning. In the

following Figure 2, lexical analysis is explained with an

example of variable declaration sentence.

Figure 2

If the compiler received the sentence as:

inttt Num1, Num2,Sum;

then it gives error as “inttt” is not interpreted as a keyword

“int”, but it may be treated as an identifier only. Fuzzy regular

language can rectify this error. To widen the definition of

keywords to allow errors due to insertion, deletion, letter

sequencing and typing errors and the concept of regular fuzzy

language defined by fuzzy regular expression found useful.

Since regular expressions (r.e.) are useful for representing

certain sets of strings in an algebraic fashion. These r.e.

describe languages that are accepted by finite state automata.

This section of paper gives a formal recursive definition of

regular expressions over a set ∑ as follows:

Definition2.1: [11] Let ∑ be any set. A regular expression

over ∑ is recursively defined as:

Lexical Analyzer

 int Num1, Num2, Sum;

int

keyword

Num1

identifier

,

punctuation

Num2

identifier

,

punctuation

Sum

identifier

;

separator

Lexical

Analysis

Source

Program

Crisp
Tokens

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.11, August 2015

2

1. Any terminal symbol (i.e. an element of ∑), ᴧ (called

null space) and ø (empty set) are regular expressions.

2. The union of two regular expressions R1 and R2, written

as R1+R2, is also a regular expression.

3. The concatenation of two regular expressions R1 and R2,

written as R1R2, is also a regular expression.

4. The iteration (or kleene closure) of a regular expressions

R, written as R*, is also a regular expression.

5. If R is a regular expressions, then (R) is also a regular

expression.

6. The regular expressions over ∑ are precisely those

obtained recursively by the application of the rules 1-5

once or several times.

Definition 2.2:[2] Let ∑ be a finite alphabet and f: ∑*→[0,1].

Then the set Ã = { (w,f(w)) | w є ∑* } is called a fuzzy

language over ∑ and f the membership function of Ã.

Definition 2.3: [2] Let Ã be a fuzzy language over ∑ and

f Ã : ∑*→[0 , 1] the membership function of Ã. Language Ã

can be called a regular fuzzy language, if for each m ϵ M ,

S Ã (m) is regular, where S Ã (m) = { w ϵ ∑* | f Ã (w)=m }.

Example 2.1: Let Ã be a language over ∑ = { a , b} and f Ã

be defined as

f Ã (s) =

1, if x є ab∗

0.8, if x є ab∗a
0.5, if x є bab∗

0 otherwise.

Then Ã is a regular fuzzy language, since S Ã (m), for m ϵ {0,

0.5, 0.8, 1.0}, is a regular expression.

Similarly if f B (x) =
0.8 if x є anbn where n > 0

0.7 if x є a b∗
0 otherwise.

Then B is not a fuzzy regular language, since SB (m), for m ϵ

{0.8}, is not a regular expression.

Fuzzy regular expressions over the alphabet ∑ are defines as:

Definition 2.4: [2] Let e be a regular expression over ∑ and m

Є [0, 1]. Then (e) / m is a fuzzy regular expression. If e1, e2, .

. . , en are fuzzy regular expressions over ∑ and m1, m2,. . . ,

mn are their respective degrees, then one can write it as

e1 / m1 + e2 / m2 + . . . + en / mn such form of writing of

regular expression is called normalized form of the fuzzy

regular expression. Regular expression verses fuzzy regular

expression discussed in the following example:

Example 2.2: Regular expression for two keywords „int‟ and

„if‟ of „C‟ language given as:

r = (int + if), whereas fuzzy regular expression for them may

be given as:

 int/1 + if/1 + int(t+)/0.8 + if(f+)/0.8 + integer/0.7.

Remark: The problem of assignment of the degree of

membership to fuzzy keywords is global in nature. Here in

this paper researcher have developed an algorithm to resolve

this problem. (see algorithm 3.2)

Definition 2.5: [11] A nondeterministic finite automata

(NDFA) is a 5-tuple, (Q, Σ, δ, q0, F), where Q is finite

nonempty set of states; Σ is finite nonempty set of inputs; δ is

the transition function mapping from Q × Σ into 2Q , q0 ∈ Q

is initial state; and F is subset of Q is the set of final states.

Instead of F as subset of Q, if F is a fuzzy subset of Q, then

the nondeterministic finite automata is treated as a

nondeterministic automata with fuzzy final states (NFA-FS).

The fuzzy language accepted by Ã, is denoted by L(Ã), is

the set { (x, d Ã (x)) | x є ∑* }, where d Ã (x) = max { F

Ã (q) | (s, x, q) ∈ δ* }.

Definition 2.7: [11] A deterministic finite automata (DFA) is

represented by a 5-tuple, (Q, Σ, δ, q0, F), where Q is finite

nonempty set of states; Σ is finite nonempty set of inputs; δ is

the transition function mapping from Q × Σ into Q and is

usually called direct transition function. This is the function

which describes the changes of states during the transition.

The mapping δ is usually represented by a transition table or a

transition diagram. q0 ∈ Q is initial state; and F is subset of Q

is the set of final states.

If F is fuzzy subset of Q instead of crisp subset of Q, then the

DFA is called deterministic finite automata with fuzzy final

states (i.e. FS-DFA). The fuzzy language accepted by Ã

denoted by L(Ã), is the set { (x, d Ã (x)) | x є ∑* }, where

 dÃ x =
F q , if δ s, x = q

 0 if δ s, x is not defined

Theorem 2.1: [11] For every NDFA, there exists a DFA that

simulates the behavior of NDFA. The converse of the theorem

is trivial. Theorem below recite the important relation

between NFA-FS and FS-DFA:

Theorem 2.2:[2] A fuzzy language is accepted by a NFA-FS

iff it is accepted by a FS-DFA.

Proof : If Ã (Q, Σ, δ, s, F) is NFA-FS for fuzzy language L,

then the construction of FS-DFA Ã′ = (Q′,Σ, δ′, s′, F′) is

straightforward. One can just use the standard subset

construction method and for each P є Q′ i.e.(P is subset of Q)

one can define

F ′(P) = max{ m│m = F(q), qϵP }

 The DFA is minimized by finding equivalent states and using

minimization algorithm as stated in [6]. In the same way the

fuzzy state DFA can be minimized by finding equivalent

states and using minimization algorithm as stated in [2].

3. FUZZY LEXICAL ANALYSIS
In designing lexical analyzer for any language, first regular

expressions are constructed. Lex scanner generator can be

used to generate a scanner from a description of the tokens as

regular expressions. On the similar lines to design fuzzy

lexical analyzer, begin with fuzzy regular expressions (FREs)

first. Lex tool is not used because tokens in fuzzy scanner may

belong to more than one categoty with varying degree of

membership between [0,1]. So from FREs develop fuzzy

NFAs and fuzzy DFAs in later stages. Tiny compiler is

considered as a crisp compiler. It takes as input a program

written in Tiny language and converts it into assembly

language. Consider scanner for Tiny language which performs

lexical analysis of input program and gives tokens as output.

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.11, August 2015

3

Table 1: Tokens of the Tiny language

Keywords Special symbols Other

If + Number(1 or more digits)

Then -

Else *

End /

Repeat = Identifier(1 or more letters)

Until <

Read (

Write)

;

:=

The tokens of Tiny language generally fall into three

categories: keywords, special symbols and other tokens. This

target compiler have eight keywords, with familiar meanings

[1]. There are 10 special symbols, giving the four basic

arithmetic operations on integers, two comparison operations

(equal and less than), parentheses, semicolon and assignment.

All special symbols are one character long except for

assignment, which is of length two. For ready reference those

tokens are summarized in the above Table 1.

An algorithm for fuzzy lexical analysis is proposed below.

First consider fuzzy tokens for all eight keywords. Broadly

fuzzy lexical analyzer will scan input program character by

character and group them into fuzzy tokens with a degree of

membership. This uses fuzzy regular expression, fuzzy NFA,

fuzzy DFA and fuzzy DFA minimization. To allow fuzzy

token recognition proceed as per following algorithm:

Algorithm 3.1 Fuzzy Lexical Analysis:

Step 1: Construction of fuzzy regular expressions for

keywords, for assignment and equal operators exists in Tiny

language.

Step 2: Design of FS-NFA for above fuzzy regular

expressions.

Step 3: Construction of FS-DFA for FS-NFA.

Step 4: Minimization of FS-DFA if possible.

Step 5: Implementation of fuzzy lexical analyzer.

Few samples of fuzzy tokens for all the 8 crisp keywords are

given in the form of table as follows:

Table 2: Sample Fuzzy Tokens for keywords in Tiny language

Key word InsertionError Deletion Error Substitution Error TypingError Character Sequencing errors

If Iifff - - - -

then thhheenn thn - rhen Hten

else eeelllsssee ele, lse Otherwise slse,elsr Lees

end eendd - - wnd Edn

repeat rrepeat repet - eepeat Erepat

until until untl - yntil Nuitl

read rreeaadd rea, ead Input eead Dear

write writtttttte rite, wite Output qrite ritew

The actual implementation of fuzzy lexical analysis step by

step is discussed in details as follows:

Step1: Construction of Fuzzy regular expressions:

Firstly fuzzy regular expressions will be constructed for

keywords that exists in Tiny language which allow insertion,

deletion, substitution, letter sequencing and typing errors.

Also this compiler allows synonyms for keywords wherever

possible. FREs for all the keywords are constructed below:

a) The FREs for reserved word “if”:

if / 1 + (ii+ff* + ii*ff+) / m

 Only insertion error is considered for keyword “if”.

For the sake of convenience no deletion, substitution,

letter sequencing and typing errors will allowed for “if”

the keyword, as it has string length two.

b) The FREs for reserved word “then”:

then / 1 + (tt+hh*ee*nn* + tt*hh+ee*nn* +

tt*hh*ee+nn*+ tt*hh*ee*nn+) / m1 + (tt*hh*ee*n* +

tt*hh*e*nn* + t*hh*ee*nn*) /m2 + (t+h+e+n)+/m3 +

((r+g+y+t)hen +t(g+y+j+n+h)en +th(e+w+d+r)n

+the(n+b+h+m))/m4

The fuzzy regular expressions can be simplified and put

together as :

then/1 + (t+h+e+n)+ /m1 + ((r+g+y+t)hen +

t(g+y+j+n+h)en + th(e+w+d+r)n + the(n+b+h+m))/m2

Hence onwards only simplified fuzzy regular expressions

for the remaining keywords are given.

c) The FREs for reserved word “else”:

else / 1+ (e+l+s)+/m1+((r+w+d+e)lse +e(k+o+p+l)se

+el(a+w+d+s)e+els (e+w+d+r)) /m2

d) The FREs for reserved word “end”:

end/1+(e+n+d)+/m1+ ((e+w+d+r)nd +e(n+b+h+m)d

+en(d+e+s+c+f))/m2

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.11, August 2015

4

e) The FREs for reserved word “repeat”:

repeat / 1 + (r+e+p+e+a+t)+ /m1 + ((r+e+t+f)epeat +

r(e+w+d+r)peat + re(p+o+l)eat + rep(e+w+d+r)at +

repe(a+s+q+z)t+ repea(t+r+g+y))/m2

f) The FREs for reserved word “until”:

until/1+(u+n+t+i+l)+/m1+ ((u+y+j+i)ntil +u(n+b+j+m)til

+un(t+r+g+y)il +unt(i+u+k+o) l +unti(l+k+o+p))/m2

g) The FREs for reserved word “read”:

read/1 + (r+e+a+d)+ / m1 + (input)/0.6 + ((r+e+f+t)ead

+r(e+w+d+r)ad+re(a+z+s)d+rea(d+s+c+f+e))/m2

h) The FREs for reserved word “write”:

write / 1 + output/0.6 + +(w+r+i+t+e)+/m1

 + (w+q+s+e)rite + w(r+e+f+t)ite + wr(i+u+k+o)te +

wri(t+r+g+y)e+writ(w+e+r+d))/m2

Note that fuzzy tokens due to substitution errors have fixed

predefined membership value (in fact it is 0.6). For example

output/0.6 (substitution error for keyword write) and input/0.6

(substitution error for keyword read). For other fuzzy tokens

value of m is calculated runtime for each input string

separately. The algorithm to compute membership value is

given below

Algorithm 3.2:

Step 1: Find length L of each crisp keyword.

Step 2: Find occurrences of each letter l in the crisp keyword as

O(l).

Step 3: Find degree of each letter for fuzzy token as

D(l)=(1/L)*O(l)

Step 4: Initialize A (l) = 0.0 for all letters in crisp keyword and

M (keyword) = 0.0

Step 5: For each letter „l‟ in input string if „l‟ is in crisp keyword

then update

A (l) = A (l) + 1

Step 6: Compute actual degree of each letter d (l) as below:

 If A(l) > 0 then

 { If (A (l) > O (l) then D (l)= D (l) /A (l)

 Else if A (l) = = O (l) then D (l)= D(l)

 Else D (l)= (A (l) / O (l)) * D (l)

 }

Step 7: M (l) = sum (D (l)) for all l in crisp keyword

 Step 8: If M (l) > 0.5, then it is recognized as a fuzzy keyword

else as an identifier.

Example 3.1: Consider the fuzzy “else” keyword, having the

length of “else” is L(“else”) = 4, and occurrences of e in

“else” is O (e) = 2. Similarly O (l) = O (s) = 1 in “else”.

Therefore by above algorithm, the degree for each character in

“else” will be calculated as follows:

d (e) = 2 /4 = 0.5 d(l) = d(s) = 1 / 4 = 0.25.

The membership degree of the input string “else” will be

calculated as follows:

M(“else”) = d(e) + d(l) + (s)

Few more examples of fuzzy keywords and computation of

their membership is summarized in the following table 3.

Table 3 Membership value computation

input

string

A

(e)

A

(l)

A

(s) D(e) D (l) d(s)

M(input

string)

Lese 2 1 1 0.5 0.25 0.25 1

Els 1 1 1 0.25 0.25 0.25 0.75

Wlse 1 1 1 0.25 0.25 0.25 0.75

Else 3 1 1 0.17 0.25 0.25 0.67

Seel 2 1 1 0.5 0.25 0.25 1

2. Design of FS-NFA for fuzzy regular expressions.

In this section, nondeterministic finite automata for fuzzy

regular expressions of the fuzzy tokens discussed in the above

section are designed. This is possible due to the following

theorem.

Theorem 2.1: For every fuzzy regular expression r there

exists a FS-NFA Ã such that the language accepted by Ã is r.

Conversely, the language accepted by given FS-NFA Ã is

always expressed as a fuzzy regular expression.

Here, FS-NFA for fuzzy regular expressions given in the

above step 1 (See (a) to (h)) are constructed with the help of

above theorem and closure properties of fuzzy regular

languages. In section below only representative FS-NFA

diagrams for fuzzy “then” and “read” i.e. for FREs „b‟ and „g‟

are given.

Note that all these FS-NFAs with ε-moves converted into

equivalent FS-DFA using ε-closure method. The degree of

acceptance of the (fuzzy) keyword is the same as the

membership degree of that keyword calculated according to

algorithm 3.2.

3. Construction of FS-DFA for FS-NFA.

The construction of FS-DFA from FS-NFA according to the

theorem 2.2 will be done in this section. These FS-DFAs are

represented as transition tables for simplicity in Table 4 and

Table 5.

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.11, August 2015

5

Figure 3: Fuzzy State –Non deterministic Finite Automata for “then”

Figure 4 Fuzzy State –Non deterministic Finite Automata for “read”

Table 4 Fuzzy State -DFA for “then”

Table 5: Fuzzy State -DFA for “read”

4. Minimization of FS-DFA:

The minimization algorithm for DFA can also be extended for

FS-DFA. In table 4 States (P, Q, S, T) and (R, O, N, C) found

equivalent and hence states (L,M), (G, H) and (I, K, C, F) are

also equivalent. This leads to states (J, L) are also equivalent.

Hence the minimized FS-DFA for fuzzy “then” will be as

shown in Figure 5 below:

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.11, August 2015

6

Figure 5: Minimized Fuzz State -DFA for “then”

Figure 6 Minimized Fuzzy State -DFA for “read”

5. Implementation of fuzzy lexical analyzer:

 This section explains full implementation of fuzzy lexical

analyzer using all the steps. In the previous section, fuzzy

regular expressions (FREs) for all eight keywords in Tiny

Language (in step 1 of algorithm 3.1) are defined. In the

implementation phase fuzzy tokens themselves are defined

using enumerated types as below:

{ENDFILE,ERROR, IF, THEN, ELSE,END, REPEAT,

UNTIL, READ,WRITE,ID, NUM, ASSIGN ,EQ ,LT ,PLUS,

MINUS, TIMES, OVER,LPAREN,RPAREN,SEMI,

/* Fuzzy keywords */

FIF,FTHEN,FELSE,FEND,FREPEAT,FUNTIL,FREAD,

FWRITE } TokenType;

In the step 2, FS-NFA for each FRE have designed. FS-NFA

are then converted to FS-DFA in step 3. In step 4 minimized

FS-DFA for each fuzzy keyword is constructed. Fuzzy lexical

analyzer implemented using switch-case constructs of „C‟

programming language. The table “KeyWords” stores

keyword structures as given below:

{{"if",IF},{"then",THEN},{"else",ELSE},{"end",END},

{"repeat",REPEAT}, {"until",UNTIL}, {"read",READ},

{"write",WRITE}, {"input",READ}, {"output",WRITE}};

In the implementation step sequence of alphabets is accepted

as identifier first. The procedure call performs a lookup of

crisp keywords, substitution keywords by string comparison.

strcmp(input_string, KeyWords)

 return KeyWords;

If no match found, then the “reserved_lookup” calls

“check_fuzzy” function is used to check the token for fuzzy

keyword due to insertion, deletion, letter sequencing and

typing errors, if any.

 currentToken=checkfuzzy();

 return currentToken;

Again if there also no match found, then current token type

retained as an identifier (i.e. ID) only. The experimental

results shows that the fuzzy keyword belongs to more than

one category with varying degree of membership. Default

membership of crisp keyword is 1, for substitution keyword it

is predefined as 0.6, for character sequencing error it is 1 and

computed runtime for insertion, deletion and typing errors. All

fuzzy keywords are identifiers. Therefore all fuzzy keywords

have membership value 1 for token type identifier.

Experimental Results: Consider input file contain following

strings

“else input elsee eend repat rhen util output ”

The fuzzy lexical analyzer scans input file character by

character from left to right and separates the tokens. Note that

only one of the token in input file above “else” is crisp and

rest all are fuzzy tokens. The fuzzy keywords are not reserved

words, i.e. the fuzzy keywords can also be used as an

identifier name. Therefore the fuzzy keyword string and it‟s

place in the sentence is important to finalize its token

category.

The result of fuzzy lexical analysis are summarized in table

below:

Table 6: Sample input strings

For example:

//program 1

read x;

write x

//program 2

input x;

output x

//program 3

read input;

write output

In the example above first program is using crisp keywords

read and write. In second program read and write keywords

are replaced by substitution words input and output

Input

String

M(key

word)

M

(identi

fier)

Crisp

Keyword

Type of error

occurred

else 1 0 else No error

input 0.6 1 read Substitution error

elsee 0.67 1 else Insertion error

eend 0.8 1

end Letter sequencing

error

repat 0.85 1 repeat Deletion error

rhen 0.75 1 then Typing error

util 0.8 1 until Deletion error

output 0.6 1 write Substitution error

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.11, August 2015

7

respectively. But in third program input and output are used as

variable names. Thus the final category of fuzzy token

depends on the token it follows or token that follows it. So

need is to change grammar rules accordingly to adapt fuzzy

lexical analysis as its output is input to syntax analysis. So

the need is to design fuzzy parser to allow fuzzy tokens for

keywords and for operators.

4. CONCLUSION
The paper described the possibility of fuzziness in keywords

due to insertion, deletion, substitution, typing and letter

sequencing errors and their implementation in this paper. The

implementation is restricted to those mentioned errors. The

synonyms for programming language constructs from natural

language can be used to allow fuzzy tokens. The work can be

further extended to allow more flexibility in tokens such that

the program will look like psuedocode. In this paper the

implementation of fuzzy keywords is fully emphasized. The

approach is to use fuzzy automata concepts to allow flexibility

(or fuzziness) in token recognition process i.e. lexical

analysis. It is termed as fuzzy lexical analysis. As a result of

fuzzy lexical analysis a token may belong to more than one

category with different degree of membership. To finalize the

token category the need is to go further and discuss fuzzy

parsing. In future the work can be extended for fuzzy parsing

that will finalize the token category mainly based on its

position in the given sentence. Fuzzy context free grammar

will allow fuzziness in syntax analysis phase of compiler in

order to model grammatical errors. The work can be extended

using fuzzy translation rules for syntax directed semantic

analysis for fuzzy relations.

5. REFERENCES
[1] Kenneth C. Louden, Compiler Construction Principles

and Practice, Cengage Learning, India Edition, 2008.

[2] Mateescu A., Salomaa A., Salomaa K., Yu S., Lexical

Analysis with a Simple Finite Fuzzy Automaton Model,

Journal of Universal Computer Science, 1995, 292-311.

[3] Bai M. Q., Sun F., Mo Z., Closure and Commutation of

Fuzzy Regular Languages, 2009 IEEE.

[4] Bai M. Q., “On the Relation between Fuzzy Regular

Expression and Fuzzy Finite State Automata”, Pure and

Applied Mathematics, 16(2000)4, pp. 1-6.

[5] Gupta M. M., Saridis G. N. and Gaines B. R., Fuzzy

Automata and Decision Processes, North-Holland, New

York, 1977, pp149-168

[6] Kumbhojkar, H. V. and Chaudhari, S. R.(2002b), “Fuzzy

Recognizers and recognizable sets”, Int. J. of Fuzzy Sets

and Systems, Vol. 131, pp. 381-92.

[7] Mordeson J. N., Malik D. S., Fuzzy Automata and

Language: Theory and Applications, Chapman & Hall, 1

edition, 2002.

[8] Santos E. S. (1968a), “Maxmin automata”, Information

and control, Vol.21, pp. 27-47.

[9] Wee W. G. and Fu, K. S. (1969), “A formulation of

fuzzy automaton and its application as a model of

learning systems”, IEEE Trans Syst. Sci. Cyber, Vol. 5,

pp. 215-23.

[10] Hopcroft, Motwani, Ullman,Introduction to Automata

Theory, Languages and Computation, Pearson

Education.

[11] Mishra K.L.P., Chandrasekaran N., Theory of Computer

Science, Prentice Hall of India, 1998.

[12] Asveld P.R.J., Fuzzy Context Free Languages – Part 1,

Generalised fuzzy context free grammars, Theore. Comp.

Sc., volume (2005).

[13] Asveld P.R.J., Fuzzy Context Free Languages – Part 2,

Recognition and Parsing Algorithms, Theore. Comp. Sc.,

volume(2005), pp 191-213.

[14] Hsuan Shih Lee, Minimizing Fuzzy finite Automaton,

2000 IEEE.

[15] Kremer D., New Directions in Fuzzy Automaton, 2005

Science Direct.

[16] Lee E. T. and Zadeh L. A., “Note on Fuzzy Languages”,

Information Sciences, 1(1969) 421-434.

[17] Xuli, Jinga, Diancheng, A Fuzzy Automaton Model and

It‟s Applications, 1996 IEEE.

IJCATM : www.ijcaonline.org

