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ABSTRACT 

Due to large size and huge availability of unwanted or missing 

information in hyperspectral image, development of data 

effective compression and denoising methods is of prior 

importance. Compression removes unmeaningful information 

and thereby reducing data which ultimately leads to noise free 

image. This study deals with execution of two lossless 

decomposition methods Low Multi-linear Rank 

Approximation, four types of Block Term Decomposition to 

the input image cube to make it noise free using non-linear 

least square method as an optimization method and their 

performance were assessed. BTD (Lr, Lr, 1) was selected as 

the best tensor algorithm based on residual error and frobenius 

norm value with a limitation that the image cube to be 

processed by the method should have good spatial resolution. 
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1. INTRODUCTION 
Hyperspectral imaging being a remote sensing technology 

provides rich source of information for detailed analysis. 

Hyperspectral data suffers from spatial and spectral blurriness 

due to gaseous disturbances present between sensors and earth 

surface [7].Hyperspectral image processing allows removal of 

un-meaningful by preserving useful information and pure 

spectra identification [9].Useful information in the image may 

be distorted due the information resulting from unknown 

sources. Algorithms designed and developed forprocessing of 

the image cube share the common ground but have different 

forms due to different degrees of target information [19].Data 

effective compression methods arean active area of research 

for the enhancement of tools and techniques in remote sensing 

technology. Compression methods which are lossy allow 

noisy data to be removed from the image whereas lossless 

data compression preserves all data [1].Researchers are more 

focusing on lossless compression methods as far as tensor 

decomposition is concerned. Since hyperspectral image is 

multivariate, multi-way arrays can also be used for data 

compression. Multi-way arrays having three or more 

dimensions or mode are called high order tensor. It can be 

used for deducing noise free image cube from the noised one. 

Mathematics used for tensor tools and analytics is multi-linear 

algebra and is a high order generalization of linear algebra. 

Tensor models such as Canonical Polyadic Decomposition 

[2], Low Multi-linear Rank Approximation [12], and Block 

Term Decomposition [8]decompose hyperspectral image in to 

low rank cubes in order to reduce it size by removing 

unmeaning information and missing entries with the 

advantage of integrating spatial-spectral domain.CPD 

,LMLRA reduces  the original tensor into sum of rank-1 

tensors, tensor of lower dimension multiplied with factor 

matrices  respectively.BTD is the combination of both, it 

decomposes the tensor into series of core tensors along with 

corresponding factor matrices i.e. sum of low multi-linear 

rank terms. Choosing the size of low rank tensor is a tedious 

task because there is no such a criterion or algorithm to 

choose the size of low rank tensors. These tensor models use 

non-linear least square as an optimization method for tensor 

decomposition. This deals with application of low multi-linear 

rank approximation (LMLRA), Block Term Decomposition 

(BTD) models.BTD is further sub divided in to three types 

based on type of dimensions of resultant tensor 

BTD(L,M,N),BTD(Lr,Lr,1),BTD(L,M,-) which will be 

discussed in further sections. 

Rest of the paper is organized as follows: Section2, 3, 4 and 5 

discusses mathematical formulation of Tensor 

decompositions, related work, evaluation results and 

conclusion respectively. 

2. TENSOR DECOMPOSITON MODELS 
Hitchcock discovered tensor decompositions in 

1927[2].Tensor decomposition is considered to be the high 

order generalization of singular value decomposition [12]. It 

deals with factorization of tensor in to core tensor and factor 

matrices. Main focus while designing the decomposition 

algorithm is there should not be any loss of information 

during decomposition [6]. 

2.1 Notations 
Hyperspectral image can be represented by third order tensor 

denoted by ℋ ∈ 𝐴𝐼1𝑋𝐼2𝑋𝐼3  having three modes I1, I2, I3 whose 

elements are represented as 𝑒𝑖1𝑖2𝑖3
with ij=1, 2, 3. p denotes 

scalars and vector is denoted by p. Matrices are represented 

by capital boldface letters i.e. P with i as the row index and j 

as the column index. Element of matrix P is denoted by aij. 

Kronecker product and Khatri-Rao product is denoted by ⨀ 

, ⊗and.𝑇,.†  denotes transpose and conjugate inverse 

respectively. 
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Kronecker product for two matrices A and B denoted by  

 

Suppose P= [P1…PR] and Q= [Q1…QR] are two apportioned 

matrices. ThenKhatri-Rao product for matrices P and Q is 

defined by: 

            (1) 

Frobenius norm for tensor ℋ ∈ 𝐴𝐼1𝑋𝐼2𝑋𝐼3  is given by: 

                  (2) 

2.2 Low Multi-linear Rank Approximation 
Tucker introduced LMLRA in 1963 [4] which was further 

modified by Tucker and Levin.It is a kind of high-order PCA 

which decomposes a tensor into core tensor multiplied by 

factor matrices 

The LMLRA decomposition for a tensorℋ ∈ 𝐴𝐼1𝑋𝐼2𝑋𝐼3  is 

mathematically defined by: 

 (3) 

where is a core tensor of size (L,M,N) and P,Q,S are factor 

matrices. 

Core tensor and factor matrices are mathematically 

represented as: 

, 

, 

 

 

Matrix representation of eq. 3 can be written as: 

                 (4) 

                (5) 

                   (6) 

Principal components among each mode can be factor 

matrices P, Q, Sand core tensor indicates the interaction level 

among different components.Factor matrices are computed as 

right singular vectors associated with non-zero singular values 

of matricesℋ𝐽𝐾×𝐼ℋ𝐾𝐼×𝐽ℋ𝐼𝐽×𝐾.Rank of these matrices relates 

to the value of L, M, and N for core tensor. 

2.3 Block Term Decomposition 
In BTD tensor is represented as sum of low rank tensors [5]. It 

is a hybrid variety of tensor models combining two basic 

tensor models. BTD combines CPD and tucker decomposition 

models.BTD is further divided into three parts which will be 

discussed in further sub sections. 

2.3.1 BTD (Lr,Lr,1) 
It decomposes a tensor  ℋ ∈ 𝐴𝐼1𝑋𝐼2𝑋𝐼3  into sum of (Lr, Lr, 1) 

rank terms where 𝑟 ≤ 𝑅[22].Mathematically it can be shown 

as: 

                           (7) 

𝑷𝑟 ∈ 𝑨I×𝐿𝑟 ,𝑸𝑟 ∈ 𝑨J×𝐿𝑟areLr rank matrices where 1 ≤ 𝑟 ≤ 𝑅. 

 

Let P= [P1…Pr], Q= [Q1…Qr] and S= [S1…Sr], then 

decomposition in matrix form can be written as 

(8) 

(9) 

(10) 

 (Lr, Lr, 1) rank terms are tri-linear in factor matrices P, Q, 

Swhich means updating one matrix given two matrices is a 

linear least square problem. 

2.3.2 BTD (L,M,N) 

This type of BTD decomposes a tensor ℋ ∈ 𝐴𝐼1𝑋𝐼2𝑋𝐼3 into sum 

of rank (L, M, N) terms[22] as follows: 

               (11) 

𝒳𝑟𝜖ℋ
𝐿×𝑀×𝑁is full rank and 

𝑷𝒓 𝜖 ℋ𝐼 ×𝐿 , 𝑸𝒓𝜖 ℋ𝐽  ×𝑀𝑎𝑛𝑑𝑺𝒓𝜖 ℋ𝐾 ×𝑁are full column 

rank.IfP= [P1…Pr], Q= [Q1…Qr] and S= [S1…Sr] Then 

decomposition in matrix form can be written as:  

(12)

(13)

   (14) 
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Vector representation of ℋ is given as: 

   (15) 

One matrix is conditionally updated by keeping two matrices 

and core tensor fixed. Same is the case for updating core 

tensor i.e. core tensor is updated by keeping all the three 

factor matrices fixed.  

2.3.3 BTD (L,M,·) 

BTD (L, M, ·) decomposes the tensor ℋ ∈ 𝐴𝐼1𝑋𝐼2𝑋𝐼3 into sum 

of (L, M,-) terms[22]. Mathematically it can be written as: 

 

                         (16) 

 

𝑺𝑟𝜖ℋ
𝐿×𝑀×𝐾 

𝑷𝒓 𝜖 ℋ𝐼 ×𝐿  ( 𝐼 ≥ 𝐿) 

𝑸𝒓𝜖 ℋ𝐽  ×𝑀   ( 𝐽 ≥ 𝑀) are full column rank,𝑟 ≤ 𝑅. In terms of 

matrix representation with P= [P1…Pr], Q= [Q1…Qr] andS= 

[S1…Sr] above equation can be written as: 

     (17) 

 (18) 

  (19) 

2.3.4 Non-Linear Least Square 
Besides alternating least square methods non-linear least 

square methods can also be used for optimization during 

tensor decompositions. In this study we have used two non-

linear least square methodsGauss-Newton, Levenberg-

Marquardt [20]. These methods deals with approximation   of 

residual tensor using linear model 

(20) 

Where complex jacobian at 
𝑐
𝑧𝑘

  is the partial derivative term in 

equation 20 which is a generalization of complex gradient 

[21].Now for the modified quadratic model of the objective 

function,𝑚𝑘
ℋ  is used as follows: 

(21) 

Where Levenberg–Marquardt regularization parameter is 𝜆𝑘  

which impacts the p parameter length and direction for 

minimization of𝑚𝑘
ℎ .𝜆𝑘 is zero for Gauss Newton method for 

all k and for controlling length and direction of the step trust 

region framework can be used. If ℋ𝐵𝑇𝐷 is analytic in its 

argument then working on the half complex jacobian is 

sufficient since identically 
𝜕  𝑣𝑒𝑐  ℋ𝐵𝑇𝐷  

𝜕𝑧 𝑇
  = 0.Hence minimization of quadratic model 

byLevenberg–Marquardt step is given as: 

    (22) 

Where at zk,𝐽𝑘 =
𝜕  𝑣𝑒𝑐  ℋ𝐵𝑇𝐷  

𝜕𝑍𝑇
 , zero vector and identity matrix 

have apposite dimensions. Jacobian is rank scarce due to 

scaling indeterminacy of decomposition. As a result some 

singular values of jacobian are zero. Due to norm constraint 

regularization in each step jacobian is singular inLevenberg–

Marquardt whereas it is necessary to capsize it in an evocative 

way in Gauss-Newton trust region algorithm. Non-linear least 

square is considered to be good competitor for alternating 

least square method [20]. NLS method has been used as 

optimization method for all the tensor decomposition models 

in this paper. 

3. RELATED WORK 
The main objective of hyperspectral imaging is identification 

and segregation of materials based on the unique reflective 

properties exhibited by them [9].Extracting useful information 

from a hyperspectral image is a challenging task now days. 

The basic idea to extract information from the hyperspectral 

image is to find the relationship between known and unknown 

elements [3].Different approaches to accomplish the objective 

include commodity cluster based parallel data analysis 

strategy which is an unsupervised technique. It integrates 

spatial and spectral data using multichannel morphological 

transformations.  [9].In [7] a fuzzy segmentation model 

combined with denoising model was used to detect materials 

from the image cube. In [6] non-negative factorization based 

approach was designed to process hyperspectral image which 

reduces a 3 mode tensor to three non-negative factor matrices. 

In[16]multi-channel and multi component scheme was 

proposed which represents the image as tensor and then 

decomposing it to get the noise free image. Main objective of 

the scheme was to minimize the mean squared error between 

original tensor and estimated tensor using filters along each 

dimension. Tensor CUR decomposition is used to compress 

hyperspectral image and to reconstruct missing entries using 

user-product-product preference tensor [11].Additive 

morphological decomposition was proposed in [17] which 

define scale space decomposition for multidimensional 

images without any loss of information. In [18] an anomaly 

detection method was proposed using the concept of 

coskewness tensor. It produces a single detection map without 

any iteration. Processing hyperspectral image using tensor 

analysis is getting more and more attention these days because 

using tensor one can integrate spatial as well as spectral 

domain to extract information of interest from HSI, unlike 

traditional methods used for its analysis. 
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4. RESULTS 
This section deals with performance evaluation of the tensor 

decomposition models explained in section 2.Fourtensor 

decomposition models namely  

LMLRA,BTD(Lr,Lr,1),BTD(L,M,N) and BTD(L,M,-) were 

used to reduce  the given image cube  into low rank image. A 

hyperspectral image of size (255, 335, 33) is modeled as a 

tensor of mode 3.Each models deals with selection of single 

core tensor or more than one tensor. The size of core tensors 

was chosen arbitrarily based on the type of decomposition 

models. The effectiveness of the models is decided on the 

basis of frobenius norm value and the relative errors generated 

during iterations. The algorithms used are designed in a way 

such that best result could be achieved by undergoing 

iterations until convergence to achieve it. Different levels of 

noise were added to tensor to check the tolerance of models. 

4.1 LMLRA 
Low multi-linear rank approximation (LMLRA) model 

decomposes original tensor into core tensor of low rank than 

original tensor and factor matrices. Algorithm used for 

computing LMLRA is non-linear least square method. Size of 

core tensor is (127, 167, 16) is chosen.Frobenius norm value 

predicts the dissimilarity between original tensor and 

generated tensor. The upper bound of this value for four noise 

levels is same but it is decreasingwith increase in iterations 

which signify the tolerance level of the model under different 

noise levels. The frobenius norm value graph for LMLRA is 

shown in figure1. 

 

 

Fig  1: Frobenius norm value graph generated using 

LMLRA tensor model 

4.2 BTD(Lr,Lr,1) 
It is a combination of tucker decomposition and canonical 

polyadic decomposition. Tucker tensor model decomposes a 

tensor into core tensor and factor matrices and CPD 

decomposes original tensor into sum of rank-1 tensors.Block 

Term Decomposition approximates the original tensor into 

sum of multi-linear rank terms i.e. series of core tensors and 

factor matrices. We have selected three core tensors of size 

([200,200,1],[100,100,1],[50,50, 1]).Non-linear least square 

algorithm is used to compute block term decomposition. 

Upperbounds frobenius value are different for all noise levels 

which makes it fit for highly noised level data and also the 

values are far less than LMLRA.The decomposition method 

works well for the  image cube  having good spatial 

resolution.Figure 2 shows the corresponding graph for the 

model under different noise levels.  

 

Fig 2:Frobenius norm value graph generated using BTD 

(Lr, Lr, 1) tensor model 

4.3 BTD (L, M, N) 
For this method also we chose three core tensors of size ([200, 

250, 25], [100, 150, 15], [50, 100, 10]).The algorithm used to 

compute BTD is non-linear least square.Although the upper 

bound frobenius norm value have the same pattern with the 

BTD (Lr, Lr, 1), the difference lies in the lower values.As 

inthe above method lower values is having a great difference 

between tensor mixed with 10 and 15 dB noise whereas for 

this methodless fluctuation of values were observed while 

going down  as in the graph.This will work best if the image 

will have good spectral but poor spatial resolution. Choosing 

the core tensor is the more critical task for this method. 

Frobenius value graph for BTD (L, M, N) is shown in figure 

3. 

 

Fig 3:Frobenius norm value graph generated using BTD 

(L, M, N) tensor model 

4.4 BTD (L, M, ·) 
This method like all other BTD methods decomposes a tensor 

in to series of tucker low rank tensors. When all the spectral 

bands of a hyperspectral image is necessary to extract 

information of interest from the given cube, this method 

proves to be the best for this situation. For this method the 

core tensors of size ([200 250 33], [100 150 33], [50 100 33]) 

has been chosen. Algorithm used is BTD nonlinear least 

square. This method is the slowest of all for an obvious reason 

of considering all spectral bands of the image. This methods 

works good for all levels of noise except for 15 dB noise but 

ended with the best value under this noise level. Figure 4 

shows the frobenius value graph for BTD (L, M, ·). 
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Fig.4.Frobenius norm value graph generated using BTD 

(L, M, ·) tensor model 

Table1.Relative Error For Decomposition Models 

Nois

e 

level 

LMLR

A 

BTD 

(Lr,Lr,1) 

BTD 

(L,M,N) 

BTD (L,M, 

-) 

5dB 0.0369 1.126e-05 5.908e-05 3.754e-04 

10dB 0.0117 9.709e-06 3.442e-05 9.525e-05 

15dB 0.0037 3.190e-06 1.055e-05 2.964e-05 

20dB 0.1176 1.118e-06 3.321e-06 9.328e-06 

5. CONCLUSION 
Four methods LMLRA,BTD(Lr,Lr,1),BTD(L,M,N) and 

BTD(L,M,-) was compared using frobenius norm and relative 

error value. Based on this value graphs generated for the 

models BTD(Lr,Lr,1) upper bound value is less among all 

models for all noise levels but the limitation of this method is 

it can only be used for the image cube with good spatial 

region. BTD(L,M,-) have shown the worst performance since 

the upper bound of frobenius value is close to 104 which is 

worst among all. All models except the earlier model upper 

bound is close to 103 .As far as the lower bound of this value 

for all models are concerned except LMLRA all the models 

have reached the frobenius value to zero at the fourth 

significant digit after decimal indicating data effective 

compression for the image cube. Table 1 shows the relative 

errors generated during decompositions for all noise levels. It 

can be seen that LMLRA had performed the worst for all 

noise levels. Least relative error is generated by BTD (Lr, Lr, 

1) for 20 dB noise whereas the highest relative error is 

generated by LMLRA at the same level. 

It is further concluded that BTD (Lr, Lr, 1) has performed the 

best for our hyperspectral dataset under all noise levels for the 

reason that the dataset used have good spatial resolution 

whereas LMLRA performed the worst for the dataset. 
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