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ABSTRACT 
Transform analysis deeply concern in the development of digital 

image processing, from the part of transform analysis, 

multiresolution transform are associated to image processing, 

signal processing and processor vision, The curvelet transform 

is a multiresolution directional transform, which deals with an 

practically ideal non adaptive scant depiction of objects with 

edges. Although the statement those wavelets transform ensure 

a wide-ranging influence in image processing, they miscarry to 

proficiently signify objects with extremely anisotropic basics 

such as lines or curvilinear constructions. But the reason is that 

wavelets are non-geometrical and do not exploit the regularity 

of the edge curve. The curvelet transforms were developing as a 

response to the strength of the wavelet transform. curvelets 

yield the usage of base features which show high directional 

capability. Multiresolution transform are current linear image 

depictions. This paper present the curvelet transform analysis, 

with its present beginning and relationship to other 

multiresolution multidirectional transform like Radon 

transform, Ridgelet transform for image denoising and 

reconstruction on the basis of varying parameter. 
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1. INTRODUCTION  

For the analysis of image processing methods we deliberate 

block transform methods. From the block transform methods, 

we introduced the generation of curvelet transform and its 

representation, Curvelet transform is a multiresolution 

transform[1] generation of curvelet is based on the Ridgelet 

transforms, but the ridgelet analysis is generated from the 

Radon transform and one dimensional wavelet transform. A 

new multiscale/multiresolution ideas in the field of image 

processing is introduce for the analysis of image in the 

extensive field of image denoising, Image Compression and 

feature extraction, the expansion of wavelets and associated 

ideas led to appropriate tools to circumnavigate through big 

datasets, to communicate compacted data quickly, to eliminate 

noise from signals and images, and to classify dynamic passing 

features in such datasets. In this research paper curvelet first 

generation analysis is summarized. 

2. RADON TRANSFORM 
Radon transform is a higher example of Trace transform, it 

is integral transform containing of the integral of a function or 

object over straight lines, are able to convert two dimensional 

images and data with lines into a domain of possible line 

parameters [2], where each line in the image and data will give a 

ultimate positioned at the resultant line parameters. Fig. 1 shows 

the representation of Radon transform [3]. 

 

Fig 1: Radon Transform Projection 

For the generation of curvelet transform [4,5], ridgelet 

transform and wavelet transform analysis used in the radon 

domain. The Radon transform of an function or object is defined 

by the group of line integrals in range ( , t) [0, 2 ) R  

given by  

1 2 1 2 1 2
R ( , t) ( , ) ( cos sin ) df f x x x x t x dx                          (1)

 
 

Where  is denoted the Dirac distribution. For the ridgelet 

coefficients (a,b, )Rf   of an object ‘f’ are known by study 

of the Radon transform through 

1/2
R (a, b, ) ( , t) ((t b) / a) dtf Rf a  


                          

(2)     
 
 

Equation (2) shows that the ridgelet transform analysis is related 

with one-dimensional (1-D) wavelet transform to the wedges of 

the Radon transform [6]. 

Finite Radon Transform (FRAT) analysis is based on the image 

pixels over a specified set of “lines” [7, 8]. Euclidean geometry 

analysis of Radon transform also based on finite geometry in a 

related mode, for finite field Zn = {0, 1,..., n − 1}, where ‘n’ is a 

prime number and Zn   is a finite field with modulo ‘n’ 

operations [9]. For analysis, we signify Zn∗ = {0, 1,..., n}. 

Finite Radon analysis of a real function ‘f’ on the finite grid Zn
2 

is defined as 

1
[ ] ( , ) [ , ]

( , ) L, ,
rk l FRATf k l f i j

i j k ln
  


                        

(3)      

Where Lk,l  is the set of rules that score a line on the lattice Zn
2, 

Lk,l  is shows 
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Set of eight parallel lines from the range of 0 to 7 selected in 

eight possible order for the analysis of finite radon transform. 

Image is situated from top to bottom, left to right are equivalent 

to the values of parallel lines. Each image have a distinct value 

of image point or (pixels) with dissimilar gray-scales, to find the 

energy of in   Radon domain is that the mean is subtracted from 

the original image f[i, j],  In the Euclidean geometry analysis, a 

line Lk,l on the plane Zn
2 is exclusively denoted by its fall of 

direction 
*k Zn (k=n infinite slope or upright lines) and its 

impose l ∈ Zn, and can be evaluated that there are n2 + n  lines 

distinct in this way and every line covers n points. Furthermore, 

any two separate points on Zn
2 acceptable to objective one line. 

Also, two lines of dissimilar drops cross at just one point. There 

are n parallel lines that deliver a whole cover of the lane Zn 
2. 

This means that for an input image f[i,j] by zero-mean, we have 

.

1
[ ]

0

1
[ , ] 0

2( , )

f i
n

rk l j
n i j zl n





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

                                      

(5)

          

 

Thus, (5) clearly show that the redundancy of the radon 

transform in each direction, there are only n − 1 independent 

Radon coefficients. Those coefficients at n + 1 directions 

coefficient generate the mean value by n2 self-determining 

coefficients and shows degrees of freedom in the predetermined 

Radon domain. For the continuous case, the   finite back 

projection (FBP) is defined the combined analysis of Radon 

coefficients of all the lines that drive through a given point and 

position, that is 

1 2
Pr(i, j) [ ], ,

( ,l) ,
FB rk l i j Zn

k ni jn
 


                (6)         

where Pi,j signifies the set of solutions of all the lines that use a 

point (i,j) ∈ Zn2. More precisely from (4) we can write. 

, {( , ) : (mod ), k Zn} {(n, j)}ni j k l l j ki n                          

(7)
          

                                                

From the mathematical analysis of (3) and (6) we obtain. 

1
Pr(i, j) [ ', ']

( ,l) , ( ', ') L ,
FB f i j

k ni j i j k ln
  

 
 

                
1

( [ ', '] . [i, j])
2( ', ') Z

f i j n f
n i j n

 



 

               [ , ]f i j                                                                  (8)                              

This (8) represent the back-projection operator and used in the 

analysis of the inverse Radon transform for zero-mean images. 

So we have an effective and precise reform algorithm for the 

Radon transform. Radon transform analysis requires n3 additions 

and n2 multiplications for computation, for efficiency, each pixel 

of original image pass once for histogram analysis in Radon 

transform [10, 11].  

3. RIDGELET TRANSFORM 
A newly developed multiresolution analysis is Ridgelet analysis 

[12]. Its result available graphics by super sites of ridge 

functions or by simple elements that are in some way related to 

ridge functions r(a1x1+…+anxn); these are functions of n 

variables, constant along hyper planes a1x1+…+anxn = c; the 

graph of such a function in dimension two looks like a ‘ridge’. 

From Radon transform we can see that the ridgelet transform 

related with other transforms in the continuous domain [13, 14]. 

For the analysis of any function or object f(x) continuous 

ridgelet transform (CRT) in R2 is distinct via [15]. 

          (a, b, ) , , ( ) ( ) d ,
2

CRTf a b x f x x

R

                           

 
(9) 

Where the ridgelets , , ( )a b x in two dimensional analyses are 

defined using one dimensional analysis 1-D  

1/2
( ) as ( ) (( cos sin ) / )

1 2, ,
x x a x x b a

a b
    




                     

(10) 

Ridgelet function is concerned with an angle θ and is constant 

along the lines which represent by x1 cosθ + x2 sinθ = const. 

Continuous wavelet transform of any function f(x) in R2 domain 

‘f’ can be defined as 

1 2 1 2 1 2 1 2
CWT ( , , , ) , , , ( ) ( ) d

2
f a a b b a a b b x f x x

R

                     

(11) 

In this the wavelets in 2-D are the product which is defined as 

1 2 1 2 1 1 2 2
, , , ( ) , ( 1) , ( 2)a a b b x a b x a b x  

                      
(12) 

From one dimensional analysis of wavelet transform we know  

,
1/2

(t) (( ) / )
a b

a t b a 


   

From this it is clear that the ridgelet and wavelet  analysis are 

same except the difference of parameter, in wavelet transform 

point parameters (b1,b2) are changed by the line parameters 

(b,θ) for ridgelet transform [16]. Representation of both these 

multiscale transform are defined as  

Wavelets:ψ scale, point−position, 

Ridgelets: ψ scale, line−position. 

Representation of ridgelet transform are based on the point 

singularity of object two dimensional analysis of wavelet and 

ridgelet  are concern via the Radon transform analysis that’s 

shows in (13) from the representation of  Radon transform [17]. 

   ,  ,
2

( )
1 2

R t f x x cos x sin t dx
f

R

                                 

(13) 

Similarly the representation of ridgelet transform in term of 

wavelet and Radon is, 

       , ,   ,
,

CRT a b t R t dt
f a b f

R
                             

(14) 

Another analysis of ridgelet transform is based on the projection 

slice theorem that shows fourier analysis of any function f(x) 

and its its two dimensional fourier transform is Ff(ω). 

( cos , sin ) ( , )
j t

Ff e Rf t dt
R


    


 

                             
(15) 



International Journal of Computer Applications (0975 – 8887) 

Volume 123 – No.12, August 2015 

  

46 

This is commonly used in image reconstruction from projection 

methods. The relationship between Radon transform [18][19], 

Wavelet transform and Ridgelet ransform are shown in fig. 

 

 

 

 

 

 

 

 

 

Fig 2: Radon Transform Relation with Ridgelet and Fourier 

transform 

It is clear that we can obtain an invertible discrete ridgelet 

transform by taking the discrete wavelet transform (DWT) on 

each one FRAT plan system, (rk[0],rk[1],...,rk[p − 1]), where the 

path k is stable. Fig 3 shows implementation of ridgelet 
transforms. 

 

Fig 3: Ridgelet Transform implementation 

4. CURVELET TRANSFORM 
Overcome the drawback of Wavelet Transform. Curvelet 

Transform is developed, Curvelet Transform is multilevel 

transform that not only used for a multi scale Time – Frequency 

analysis [20, 21], it is also used for the analysis of directional 

features. Curvelet concept is by Candes and Donoha, this 

transform is based on the multiresolution analysis, length and 

width are related anisotropic scaling law. Furthermore, edge 

fundamental in curvelet is defined by scaling, position and 

orientation parameters but in  wavelets there are  only scale and 

location parameter. Curvelet transform are used in both domain 

analysisis frequency domain and time domain. All analysis of 

curvelet transform is based on the first generation (DCTG1) and 

curvelet second generation (DCTG2). 

4.1 First Generation Curvelets Construction  
The first generation CurveletG1 transform [22] are based on the 

possibility to analyse an image with different block sizes 

curvelet G1 analysis based on the flow graph shown in fig 4.  

 

 

 

 

 

 

 

 

Fig 4: Ridgelet Transform Analysis for Curvelet Generation 

1 

Fig. 4 represent the generation of curvelet transform from 

ridgelet analysis [23, 24, 25], in this any object selected as a 

input and process this selected input for band pass filtering a, 

sub band decomposition, parameter analysis and ridgelet 

analysis of each square.. The First Generation Discrete Curvelet 

Transform (DCTG1) of a continuous function f(x) creates  use a 

sequence of scales, and a filters bank property, in this property 

the band pass filter ∆j is in the frequencies [22j,22j+2], e.g. 

( ) 2 ,f j fj         
2ˆ ˆ2 ( ) (2 )

j
j v v


    

Decomposition of curvelet transform are based on sub band 

decomposition [26, 27], smooth portioning and ridgelet 

analysis, this produce that the curvelet decomposition of 
function in the range [22j,22j+2].  

 

 

 

Fig 5: Decomposition of Curvelet generation 1 

Before the final analysis (ridgelet analysis) [28, 29, 30] of 

curvelet decomposition two dyadic sub band in the range 2n and 

2n+1, for this a isotropic wavelet transform are required, 

algorithm representation of curvelet decomposition as a 

superposition is in  the form of any image f[i1,i2]  n×n is.  

1 2 1 2 1 2
[ , ] [ , ] [ , ]

1

J
f i i Z i i wj i iJ j

  


                                      
(16)  

Where ZJ is a coarse or flat form of the original image f and wj 

signifies ‘the details of f at scale 2−j. Thus, the algorithm outputs 

J + 1 sub-band arrays of size n × n. algorithm representation are 

as follows: 

Algorithm 1 for curvelet generation 1 

Select n × n image f[i1,i2],  

1: Apply two dimensional wavelet transform with J scales, 

2: Set Z1 = Zmin, 

3: for j = 1,...,J do 

4: Partition the sub-band with a block size Cj and apply the 

DRT to each block, 

5: if j modulo 2 = 1 then 

6: Zj+1 = 2Zj, 

7: else 

8: Zj+1 = Zj. 
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9: end if 

10: end for 

In this the side-length of the containing windows is doubled at 

every other dyadic sub-band, hence recalling the essential 

property of the curvelet transform at jth   for the features of 

length about 2−j/2.  

5. RESULT AND DISCUSSION 
For the implementation of multiresolution analysis , there are 

two box ridgelet transform and curvelet transform toolbox, 

Implementation is based on the MATLAB software. From 

ridgelet toolbox original image are compared for the value of 

signal to noise ratio (SNR), comparison of different 

multiresolution is shown in fig 6, 7 and 8. In other 

multiresolution analysis representation of curvelet transform are 

produce varying different parameter. 

 
Fig 6: Original Image  

 

 
Fig 7: Image denoising by FRAT and FRIT 

 
Fig 8: Analysis of compressed image by FRIT 

 

 
Fig 9: Image Denoising by Wavelet and Ridgelet Transform 

 

 
 

   Fig 10: Analysis of curvelet for j=3,l=2 near the boundary 

and at the center 

 

 

Fig 11: Analysis of curvelet for j=4,l=2 near the 

boundary and at the Centre 

 

Fig 12: Analysis of curvelet for j=5,l=4 near the 

boundary and at the Centre 
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Fig 13:  Partial reconstruction of curvelet for N=5 and 

N=10.  

 

Fig 14: Partial reconstruction of curvelet for N=128 and 

N=256  

6. CONCLUSION 
Multiresolution transform analysis is produced for the 

performance comparison. In this primary result  analysis is 

based on the selection of Guass half circle image and its 

analysis for comparison of signal to noise ratio for FRAT, FRIT 

Wavelet transform, this shows that the FRIT produce better 

result than other methods. Secondary analysis is based on the 

implementation of curvelet transform generation, Curvelet 

representation is based on the variation of i, j and N, according 

the variation of these parameter different types of representation 

are generated. Implementation of algorithms is based on 

MATLAB transform using curvelab and ridgeleler toolbox.   
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