
International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.13, August 2015

39

Task Scheduling and Idle-Time Balancing in

Homogeneous Multi Processors: A Comparison between

GA and SA

Mohammad Amin Pishdar

Department of Computer Engineering, Bandar
Abbas Branch, Islamic Azad University, Bandar

Abbas, Iran

Abbas Akkasi

Department of Computer Engineering, Science
and Research Branch, Islamic Azad University,

Tehran, Iran

ABSTRACT

Task scheduling problem has a special significance in

multiprocessors due to efficient use of the processor and also

spending less time. Tasks should be assigned to processors in

such a way to minimizing makespan. In this paper, we use

genetic algorithm and simulated annealing to solve task

scheduling problem on multi homogenous processors with

minimizing completion time. In addition we introduce another

fitness function as processors idle-time balancing which

should be less than a predetermined value. These algorithms

are used to determine suitable priorities that lead to a sub-

optimal solution. And finally to compare the performance of

these algorithms, we design 9 test problem based on two

fitness function.

Keywords

Genetic algorithm, multiprocessor task scheduling, parallel

processing, simulated annealing.

1. INTRODUCTION
Computers can be used by several processors instead of a

processor in which case they are called multiprocessing

systems. In order to use these systems require a specific

operating system that can process multiple applications or

threads to execute in parallel on them. One of the main

challenges in multi-processor systems which work is

scheduled to be optimized. Task scheduling problem has a

special significance in multiprocessors due to efficient use of

the processors and also spending less time. Tasks should be

assigned to processors in such a way to minimizing makespan.

It is such a NP-hard problem, no algorithm is able to solve it

definitively. This problem has been solved by many meta-

heuristics algorithms.

As reviewed above, this article addresses task scheduling on

multi-processors problems which solved by GA and SA.

This paper is organized as follows: Relevant previous

researches are reviewed in section (2). In section (3) the

problem is described. In section (4) the solving technique and

characteristics of meta-heuristics are explained. Finally these

algorithms are compared and the results are shown section (5).

2. LITERATURE REVIEW
Dahal et al [1] used genetic algorithm for dynamic scheduling

of real-time tasks in a multi processor system to obtain a

feasible solution. They used genetic algorithms combined

with well-known heuristics, such as „Earliest Deadline First‟

and „Shortest Computation Time First. Miryani and

Naghibzade [2] present study on Scheduling in Heterogeneous

Systems. They use a multi objective approach for problem.

They proposes a suboptimal scheduler for hard real time

heterogeneous multiprocessor systems considering time

constraints and cache reload time simultaneously. tainer and

white [3] introduce a hybrid metaheuristic algorithm for

solving the problem of multi-core deployment optimization

(MCDO). they used Simulated Annealing and Ant Colony for

hybrid algorithm. they showed performance of the algorithm

by comparing with other algorithms. Hooshmand et al [4]

perform a study on Scheduling of Task Graphs to

Multiprocessors problem. for solving the problem they used a

Combination of Modified Simulated Annealing and List based

Scheduling. Gupta et al [5] used a genetic algorithm to solve

the problem of multi-processor scheduling. To evaluate the

performance, they compared genetic algorithm with HEFT.

Their comparison is based on quality of answers, robustness

and the effects of mutation on the function of the genetic

algorithm. Omara and arafa [6] use two genetic algorithms for

solving task scheduling in parallel processing. They consider

some heuristic rules for better performance if algorithms.

They present to fitness function which first of them minimize

completion time and the second one consider load balancing.

Wen et al [7], addresses a hybrid genetic and VNS algorithm

for task scheduling in homogenous processors. They consider

some good neighbor structure for minimizing completion time

in task scheduling. Wu et al [8] developed task scheduling for

multi-processors systems. They use genetic algorithms for

solving their problem. Key features of their system was

include a flexible, adaptive representation and an incremental

fitness function. Roy et al [9] proposed a modification of

heuristic approach of genetic algorithm method based on

bottom-level by choosing the eligible processor for assigning

the tasks which eventually decreases the computational time

for finding the suboptimal schedule. Thanushkodi and Deeba

[10] developed job scheduling in multi processors. They

proposed Genetic algorithm, particle swarm algorithm and

improved particle swarm algorithm to solve problem. Finally

they compared performance of algorithms.

3. PROBLEM DESCRIPTION
The task scheduling problem is to assign a number of jobs

onto the set of available processors in such a way that

precedence constraints are maintained with the objective to

minimize the completion time [11]. In addition, another

objective function as balancing the processors idle time is

used in this paper which should be less than a predetermined

value (Beta). The second objective function value is

calculated by difference between maximum idle-time and

minimum idle-time.

In this paper as illustrated in Fig 1. a directed acyclic graph

(DAG) consisting of 16 tasks is shown should be assigned to

International Journal of Computer Applications (0975 – 8887)

Volume 124 No.*, August 2015

40

the 3 Homogenous processors in such a way that precedence

constraints are satisfied and to determine the start and finish

times of each task with the objective to minimize the

makespan and also to minimize the processors idle-time

balancing.

Fig 1: Directed Acyclic Graph (DAG)

Assumption:

 The processors are homogenous.

 According to graph node 1 can be ignored but it‟s

time is considered in Gantt chart.

 Times follow uniform distribution between (2,6).

 Beta is equal to 5.

An example of task Gantt chart is shown in Fig 2. The

completion time and each processors idle-time is visible. In

this example, maximum idle-time and minimum idle-time

belongs to P3 and P2 respectively. So the difference between

them is equal to 8 which is not possible for us.

Fig 2: Task Gantt Chart

International Journal of Computer Applications (0975 – 8887)

Volume 124 No.*, August 2015

41

4. SOLUTION ALGORITHMS

4.1 Genetic algorithm
Steps of GA are organized below:

1. [Start] Generate random population of n

chromosomes (suitable solutions for the problem).

2. [Fitness] Evaluate the fitness f(x) of each

chromosome x in the population.

3. [New population] Create a new population by

repeating following steps until the new population is

complete.

 [Selection] Select two parent chromosomes

from a population according to their fitness

(the better fitness, the bigger chance to be

selected).

 [Crossover] With a crossover probability

cross over the parents to form a new

offspring (children). If no crossover was

performed, offspring is an exact copy of

parents.

 [Mutation] With a mutation probability

mutate new offspring at each locus (position

in chromosome).

 [Accepting] Place new offspring in a new

population.

4. [Replace] Use new generated population for a

further run of algorithm.

5. [Test] If the end condition is satisfied, stop, and

return the best solution in current population .

6. [Loop] Go to step 2 [12].

4.1.1 Initial population
Initial population, firstly constructed randomly as an

array which is consisted all tasks expect task 1. Task 1

as initial node that has any precedence, assign randomly

to one of processors and then all tasks will be scheduled

with considering precedence. After array construction,

tasks will be assigned to processors by equation (1).

P: Number of processors.

N: Number of tasks.

S: Number of tasks which are assigned to each

processor.

N
S

P
 (1)

 As illustrated in Fig. 5. (Step 1), first five tasks{16,3,6,11,7}

assign to processor P1. Processor P2 is consist of

tasks{14,8,5,15,2} and tasks{4,13,9,10,12} is assigned to last

processor.

4.1.2 Crossover

Each chromosome in population is subject to crossover

with some probability. Crossover operator randomly

selects two parent chromosomes by using roulette wheel

selection procedure and tournament selection procedure.

In this paper, two crossover operators are used which are

chosen randomly.

 Single point crossover

Each This operator is applied to the array of

chromosomes. A point is selected randomly

between 1 to number of tasks and divide parent 1

and parent 2 in two portion. The portions of

chromosomes lying to the right of crossover point

are exchanged to produce two offsprings. (Shown

in Fig 3.).

 Double point crossover

Two point is selected randomly between 1 to

number of tasks and divide parent 1 and parent 2

in three portion. The portions of chromosomes

lying to the between of two crossover points are

exchanged to produce two offsprings. (Shown in

Fig 4.).

After producing offsprings by crossover, it‟s may be possible

to face some frequent tasks in array which should be solved.

For this problem, first, all the frequent tasks has been

specified in two producing array and exchange their position

to modify the offsprings. (Shown in Fig 3. and Fig 4).

International Journal of Computer Applications (0975 – 8887)

Volume 124 No.*, August 2015

42

Fig 3: Single Point Crossover

Fig 4: Double Point Crossover

4.1.3 Mutation
According to problem, mutation operator change the position

of selected task. In this paper, two different methods are used

for mutation operation which choose randomly.

 Matching and swapping Mutation

As illustrated in Fig. 5. First, tasks of array are

assigned to processors (Step 1). Then select on point

between tasks randomly. For each portion it is

assigned three random numbers between 1 and 3

separately (Step 2). After that for two portions with

same matching number, right side of mutation point

of one portion is transmitted to the left side of other

one (Step 3). And finally change it to on array again

(Step 4).

 Mutation based on completion time

This kind of mutation performs mutation operation

with attendance to completion time (CT) of

processors. first it specifies two processors which

have maximum and minimum CT and then, choose

two tasks randomly among these processors and

change their positions. (Fig. 6.)

International Journal of Computer Applications (0975 – 8887)

Volume 124 No.*, August 2015

43

Fig 5: Matching and swapping Mutation

Fig 6: Mutation based on completion time

4.2 Simulated annealing algorithm
Steps of SA are organized below:

1. First, Generate a random solution and

evaluation.

2. Consider the solution as the best answer.

3. Set the initial temperature. (T = T0)

4. Repeat steps below until an acceptable

solution is found or you reach maximum

number of iterations.

 Generate a random solution in the

neighborhood of the current response

and evaluation.

 New Reply in the event of better

reception.

 New Reply conditional acceptance if

they not better.

 The solution has been updated.

 Reduce temperature.

5. If you need, return to Step 4.

4.2.1 Neighborhood structures
In simulated annealing algorithm, it is considered four

neighborhood structures which are explained below (Fig.7.):

 Swap: two units of a solution are selected

randomly and their positions are swapped.

 Reversion: in addition to swap, units located

between swapped units are reversed, too.

 Insertion: the unit in the second position is located

immediate after the unit in the first location and

the other units are shifted to the right hand side

accordingly.

 Swapping a reversed part of solution (SRPS): a

subsequence of solutions is selected and then

shifted to a new position, and also the

subsequence selected part of solution is reversed

International Journal of Computer Applications (0975 – 8887)

Volume 124 No.*, August 2015

44

Fig 7: Neighborhood structures

4.2.2 Temperature reduction rule
In this paper, dynamic rule is used with some changes for

temperature reduction rule. Based on this rule, temperature

reduces with considering to the search region or solutions. In

this rule if after some iteration, algorithm achieves almost

same fitness function it should be used linear temperature

reduction as shown in equation (2).

T0: Initial temperature

i: Number of reduction temperature stage

 : Constant value between (0,1)

0 * iT T i
 (2)

Otherwise it used logarithmic rule which reduce

temperature by less rate and has more convergence to

global optimization. (Equation 3)

0

log
i

T
T

i

 (3)

5. CONCLUSION
In this paper, genetic algorithm and simulated annealing

algorithm is used for task scheduling problem based on

directed acyclic graph (DAG) consisting of 16 tasks and 3

processors. 9 different type of testing problem is defined to

evaluate performance of algorithms. The results are shown in

Table 1. and Fig 8. and Fig 9. it should be noted that solutions

are acceptable for us which have idle-time balancing less than

or equal to 5.

Table 1. Comparison Between Ga And Sa

 GA SA

Max

iteration

Initial

population

Time

completion

Idle-time

balancing

Acceptable or

not

Time

completion

Idle-time

balancing
Acceptable or not

200 100 37 8 36 7

500 100 33 9 32 5 **

1000 100 29 5 ** 29 4 **

200 200 30 9 32 7

500 200 26 4 ** 27 5 **

1000 200 21 5 ** 22 6

200 500 27 5 ** 21 5 **

500 500 21 6 21 4 **

1000 500 21 4 ** 21 4 **

The best solution is reached in Iteration=1000 and Npop=500

for Genetic algorithm and in Iteration=500,1000 and

Npop=500 for simulated annealing algorithm. In 9 type

testing problem Genetic algorithm give us just 5 acceptable

solution in comparison to simulated annealing algorithm with

6 acceptable solution.

International Journal of Computer Applications (0975 – 8887)

Volume 124 No.*, August 2015

45

Fig 8: Completion time

Fig 9: Idle time

6. REFERENCES
[1] Dahal, K. and Hossain, A. and Varghese, B. and

Abraham, A. and Xhafa, F. and Daradoumis, A. (2008).

Scheduling in Multiprocessor System Using Genetic

Algorithms. 7th Computer Information Systems and

Industrial Management Applications.

[2] Miryani, M. R. and Naghibzadeh, M. “Hard Real-Time

Multiobjective Scheduling in Heterogeneous Systems

Using Genetic Algorithms,” Proceedings of the 14th

International CSI Computer Conference (CSICC'09).,

2009, pp. 437-445.

[3] Turner, H. and White, J. (2013). Multi-core Deployment

Optimization Using Simulated Annealing and Ant

Colony Optimization. 12th IEEE International

Conference on Trust, Security and Privacy in Computing

and Communications.

[4] Houshmand, M. and Soleymanpour, E. and Salami, H.

and Amerian, M. and Deldari, H. (2010). Efficient

Scheduling of Task Graphs to Multiprocessors Using A

Combination of Modified Simulated Annealing and List

based Scheduling. Third International Symposium on

Intelligent Information Technology and Security

Informatics.

[5] Gupta, S. and Agarwal, G. and Kumar, V. (2010). Task

Scheduling in Multiprocessor System Using Genetic

Algorithm. Second International Conference on Machine

Learning and Computing.

[6] Omara, F. A. and Arafa, M. M. (2010.). Genetic

algorithms for task scheduling problem. J. Parallel

Distrib. Comput. 70, pp. 13-22. Available:

www.elsevier.com/locate/jpdc

[7] Wen, Y. and Xu, H. and Yang, J. (2011.). A heuristic-

based hybrid genetic-variable neighborhood search

algorithm for task scheduling in heterogeneous

multiprocessor system. Information Sciences. 181, pp.

567-581. Available: www.elsevier.com/locate/ins

[8] Wu, A. S. and Yu, H. and Jin, S. and Lin, K. and

Schiavone, G. (2004, Sep.). An Incremental Genetic

Algorithm Approach to Multiprocessor Scheduling.

IEEE Transactions on Parallel and Distributed Systems.

15(9), pp. 824-834.

[9] Roy, P. and Alam, M. M. and Das, N. (2012, July.).

Heuristic Based Task Scheduling In Multiprocessor

Systems With Genetic Algorithm By Choosing The

Eligible Processor. International Journal of Distributed

and Parallel Systems (IJDPS). 3(4), pp. 111-121.

[10] Thanushkodi, K. and Deeba, K. (2011, May.). On

Performance Comparisons of GA, PSO and proposed

Improved PSO for Job Scheduling in Multiprocessor

Architecture. International Journal of Computer Science

and Network Security (IJCSNS). 11(5), pp. 27-34.

[11] Kaur, R. and Singh, G. 2012. Genetic Algorithm

Solution for Scheduling Jobs in Multiprocessor

Environment. India Conference (INDICON).

[12] http://cs.nyu.edu/courses/fall12/CSCI-GA.2965-

001/geneticalg.

IJCATM : www.ijcaonline.org

