
International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.13, August 2015

22

SHA-3 Blake Finalist on Hardware Architecture of ARM

Cortex A8 Processor

Gurpreet Singh

Electronics and Communication Engineering

Ludhiana College of Engineering and Technology,

Ludhiana (INDIA)

Rajeev Sobti

Computer Science Engineering

Lovely Professional University,

Phagwara, (INDIA)

ABSTRACT

Information is an asset in today’s life. Internet plays major

role for sharing the information between two parties. To

protect the information from attacks there exist several

algorithms. Cryptographic hash functions are the one that is

used for the purpose of modern security. In mobile

computing, portables devices are used to share information.

Most of portable devices are based on ARM processors. In

this work, a BLAKE algorithm from SHA-3 finalists is

selected for analysis on ARM Cortex A8 Processor. BLAKE

is a hash function selected by NIST in SHA-3 competition.

Many factors need to be considered such as utilization of

memories ROM or RAM, power consumption and cycles

required for particular algorithm. In this paper, the objective is

to compare the performance of all variants of BLAKE in

terms of cycles required on ARM Cortex A8.

General Terms
SHA-3 competition, Kernel Loadable module, Minicom,

Embedded Linux, AM335x, scp command, insmod command,

NIST.

Keywords
Cryptography, Hash functions, SHA-3, BLAKE, ARM11,

ARM Cortex A8.

1. INTRODUCTION
Security must require when information is sent and received

over communication channel to prevent from different types

of attacks. Information needs to be protected from

unauthorized access, unauthorized change and available only

for authorized person when it is needed, which are three

fundamental requirement of security [1].

Cryptography is defined as the science and study of secret

writing and used to provide secure communication for

transferring information over network [2].

1.1 Cryptographic Hash Functions
A Cryptographic Hash functions are those functions which

compress an input of variable-length block of data length to a

fixed length hash output value i.e. MD (Message digest) [3].

According to need, Cryptographic Hash functions are

restricted by four security requirements.

Properties of Cryptographic hash functions h(x) [2] [3]:

1. A hash function should be easy to calculate.

2. Preimage Resistance: For each and every output of a hash

function, it is 'computationally impracticable' to find any input

hashing to that output.

3. Second Preimage Resistance: For a given input, It is

'computationally impracticable' to find a second input hashing

to the same output.

4. Collision Resistance: It is 'computationally impracticable'

to find two colliding inputs, i.e., x and x' such that x'! = x with

h(x) = h(x').

There are different types of hash functions like MD4, MD5,

RIPEMD, RIPEMD-160, HAVAL, Tiger, Whirlpool, Radio

Gatun, SHA-0, SHA-1 and SHA-2 [1]. Some attacks were

observed on SHA – 0 and SHA – 1[2]. SHA – 2 has same

structure as SHA –1. In 2007, NIST (National Institute of

Standards Technology) announced call for developing new

hash algorithms which improves weaknesses of MD5, SHA1

and SHA-2, more reliable and given a name as SHA-3[4] [9].

SHA-3 has five algorithms BLAKE, Grøstl, JH, KECCAK and

Skein which is selected as SHA-3 finalists. [4][5][6][9].

2. BLAKE HASH FUNCTION
BLAKE is one of five hash algorithms which is selected for

the final round of NIST SHA-3 competition [9]. It is one of

the simplest design to implement, and relies on previously

analyzed components: the HAIFA structure and the ChaCha

core function [7][8].

The two main types of BLAKE are BLAKE-256 and

BLAKE-512. They are work with 32 and 64-bit words, and

produce 256 and 512-bit digests. BLAKE is a family of four

hash functions: BLAKE-224, BLAKE-256, BLAKE-384, and

BLAKE-512.

BLAKE has a 32-bit version (BLAKE-256) and a 64-bit one

(BLAKE-512), from which other instances are derived using

different initial values, different padding, and truncated output

[8].

The final BLAKE consists is an increased number of rounds:

14 instead of 10 for BLAKE-224 and BLAKE-256, and 16

instead of 14 for BLAKE-384 and BLAKE-512. The table

listed below shows properties of BLAKE Hash Function:

Table 1. Properties of the BLAKE hash functions (in bits).

Parameter Blake-

224

Blake-

256

Blake-

384

Blake-

512

Word 32 32 64 64

Message <264 <264 <2128 <2128

Block 512 512 1024 1024

Digest 224 256 384 512

Salt 128 128 256 256

The hash function BLAKE-256 operates on 32-bit words and

returns a 32-byte hash value.

Initial values and constants for Blake-256 are given as below

[8]:

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.13, August 2015

23

Initial Values

IV0 = 6A09E667 IV1 = BB67AE85

IV2 = 3C6EF372 IV3 = A54FF53A

IV4 = 510E527F IV5 = 9B05688C

IV6 = 1F83D9AB IV7 = 5BE0CD1

Constants

C0 = 243F6A88 C1 = 85A308D3

C2 = 13198A2E C3 = 3707344

C4 = A4093822 C5 = 299F31D0

C6 = 082EFA98 C7 = EC4E6C89

C8 = 452821E6 C9 = 38D01377

C10 = BE5466CF C11 = 34E90C6C

C12 = C0AC29B7 C13 = C97C50DD

C14 = 3F84D5B5 C15 = B5470917

The compression function of BLAKE-256 takes as input four

values:

• a chain value h = h0 to h7

• a message block m = m0 to m15

• a salt s = s0 to s3, counter t = t0, t1

Table 2. Permutations of used by the BLAKE as below

[8]:

σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9

0 14 11 7 2 9 12 13 6 10

1 10 8 9 12 0 5 11 15 2

2 4 12 3 6 5 1 7 14 8

3 8 0 1 10 7 15 14 9 4

4 9 5 13 0 9 14 12 11 7

5 15 2 12 11 4 13 1 3 6

6 13 15 11 8 10 4 3 0 1

7 6 13 15 3 15 10 9 8 5

8 1 10 14 4 14 0 5 12 15

9 12 14 1 13 1 7 0 2 11

10 0 3 11 7 11 6 15 13 9

11 2 6 12 5 12 3 4 7 14

12 11 7 6 15 6 9 8 1 3

13 7 1 8 14 8 2 6 4 12

14 5 9 3 1 3 8 2 10 13

15 3 4 13 9 13 11 10 5 0

The compression function of Blake algorithm is divided in to

three steps:

1. Initialization

2. Round function

3. Finalization

Although, these three steps are same in all Blake 224,

256,384,512 but with minor changes is explained later on this

context.

1 bit Control

I/O

512 /1024 bits

Figure 1: Block Diagram of Blake Hash Function

2.1 Initialization:
A 16-word state v0 to v15 is initialized such that different

inputs produce different initial states [7].

The state is represented as a 4×4 matrix, and filled v0 to v15

as follows:

v0 v1 v2 v3

v4 v5 v6 v7

v8 v9 v10 v11

v12 v13 v14 v15

which is obtained from below:

h0 h1 h2 h3

h4 h5 h6 h7

s0 xor c0 s1 xor c1 s2 xor c2 s3 xor c3

t0 xor c4 t0 xor c5 t1 xor c6 t1 xor c7

Here

h = chain value,

s =salt,

c = constant, t = time period

Finalization

Memory

Initialization

Round Unit

Control

Unit

OutEn h’

inEn t h s

m

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.13, August 2015

24

2.2 Round function
When the state v is initialized, the compression function

iterates a series of 14 rounds. The notation of round is r, Gi (a,

b, c, d) sets Gi function is performed in to three important

function [7][8].

1) + addition modulo 232 or (modulo 264).

2) ⊕ Boolean exclusive OR (XOR).

3) ≫ k rotation of k bits towards less significant bits.

4) ≪ k rotation of k bits towards more significant bit

Figure 2: The Gi function.

The sequence G0 to G3 is called a column step and similarly,

the last four calls G4 to G7 are called diagonal step.

Figure 3: G functions in column step

Figure 4: G functions in diagonal step

Round Function iterated 14 times in Blake-256 and the G -

function repeated 112 times in Blake 256 (32-bits word)

Figure 5: Round Function Iteration

2.3 Finalization:

When the round function is done, the new chain value h′0, to

h′7 is take out from the state v0 to v15 with input of the initial

chain value h0 toh7 and the salt s0 to s3:

h’0 = h0 xor s0 xor v0 xor v8

h’1 = h1 xor s1 xor v1 xor v9

h’2 = h2 xor s2 xor v2 xor v10

h’3 = h3 xor s3 xor v3 xor v11

h’4 = h4 xor s0 xor v4 xor v12

h’5 = h4 xor s1 xor v5 xor v13

h’6 = h6 xor s2 xor v6 xor v14

h’7 = h7 xor s3 xor v7 xor v15

3. Hashing a message for Blake-256
Hashing of message divided in two parts:

Padding and Iterated hash. Hashing of message depends on m

bit length. The message is first padded and then Iteration hash

processed block by block compression function.

3.1 Hashing a message for Blake-512
The process of message padding is given as below:

Append a bit 1 and as many 0 bits until the message bit length

is ≅ to 895 modulo 1024. Then append a bit 1 and a 128-bit

unsigned big-endian representation of the message bit length:

m ← m||1000 . . .0001(ℓ)128

4. BLAKE-512
 operates on 64-bit words and returns a 64-byte hash value.

All lengths of variables are doubled compared to BLAKE-

256:

 Chain values are 512-bit,

 Message blocks are 1024-bit,

 Salt is 256-bit,

 Counter is 128-bit and

The Round Function iterated 16 times in Blake-512 and G -

function repeated 128 times in Blake 512 (64-bits word).The

details of initial values and constants can be found at [8].

4.1 BLAKE-224

Is similar to BLAKE-256 and BLAKE-384 is similar to

BLAKE-512 the detail can be found at [8].

G0

V0

V4

V12

V8

V1

V5

V9

V13

G1

G2

V2

V6

V10

V14

V7

V3

V11

V15

G3

G5

 G1

V1 G4

V4

V11

V0

V5

V10

V15

V6

V9

V12

V7

V2 V3

G7

V14

V8

G6

V13

Column Step

Finalization

Initialization

Diagonal Step

Round 14

G-Function Call 112

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.13, August 2015

25

5. ARM ARCHITECTURE
ARM processor plays significant role in handheld devices.

Instead of computer, the mobiles phones and tablets are used

for sharing information over emails and financial transactions

in banking sector, online shopping etc. In our surroundings,

most of portable devices are based on ARM processors.

5.1 Important Features of ARM [10]:
- ARM processor having increment, decrement logic and

barrel shifter which is independent from ALU: This feature

makes architecture comparatively fast from others because no

heavy burden of ALU.

- Low cost and small size: Low cost enables device

manufactures to use ARM in their products. Small size fits in

to applications even like IoT (Internet of Things).

- Less power consumption: ARM is also suitable for power

sensitive as a basic requirement of handheld battery operated

applications

5.2 ARM Cortex A8
The ARM Cortex-A has wide range of OS (Linux, Android,

iOS) based applications and multiples software tasks. The

ARM Cortex-A series processors are based on 32-Bit RISC

processor with modified Harvard architecture having

Load/Store and Thumb-2 instruction. It also has Big-endian

and little-endian data access support [11].The Cortex-A8

processor was the first to implement the ARMv7-A

architecture. It is available in a number of different processors

such as the S5PC100 from Samsung, the AM335x from Texas

Instruments and the i.MX515 from Freescale etc. A wide

range of device performances are available and it can run

clock speeds of more than 1GHz [11, 12].

ARM Cortex A8 is used to evaluate performance of BLAKE

because it is widely used for application devices from in

mobiles, tablets and smart phone etc.

6. IMPLEMENTATION SETUP
Linux is very much popular as per developer’s point of view.

Millions of computer users have been putting Linux to work

for more nearly 20 years. Ubuntu is an operating system based

on the Linux kernel; created, improved, refined, and

distributed by the Ubuntu Community at www.ubuntu.com

[13]. In this work, Ubuntu 12.04 LTS version is used at host

side.

6.1 Embedded Linux
Embedded Linux means Linux is downloaded in

microprocessor which is target for embedded applications.

The same Linux kernel source code (as in desktop Linux)

built for particular hardware by recompiling the kernel source

code with minimizing the optional features which is not a

requirement for those particular applications [13]. Embedded

Linux or any OS in used for embedded application for parallel

processing. Embedded Linux board having AM335x

processor with preloaded Linux is chosen for analysis at target

side. The Open board-AM335x has the features for supporting

the phyCORE-AM335x RS-232 transceiver female DB9

connector and RJ-45 jack with 10/100/1000 Mbps Ethernet

PHY[15]. Linux Kernel version 3.2.0 is used at target end.

Minicom is used to access Linux board and arm gcc complier

is used to compile the each algorithm.

6.2 Remote access of Linux Machines for

Sharing files between each other
RS-232 interface is used for communicating board with host

computer and Ethernet connector is used for sending and

receiving files between board and computer with usage of

TFTP server or scp command [15]. To transfer the files

between board and computer a network connection must be

established first. Configure the IP address for host by

selecting the option network connection and modify the

related option or issue below command [13].

 $ ifconfig eth0 192.168.1.10 up

 On Target side issue the same command with a different IP as

below

 $ ifconfig eth0 192.168.1.11 up

It must be noted the IP of Host and target side should not be

same.

6.3 Enabling Cycle Count Register with

Kernel Loadable Module
Linux is the ability to extend at runtime the set of features

offered by the kernel. This means that you can add

functionality to the kernel (and remove function as well)

while the system is up and running. Each piece of the code

can be added to the kernel in called module [16].

To get the count from processor, performance counters must

be enabled for ARM Cortex A8 processor. A short kernel

loadable module is written because, by default these counters

are disabled [16].The description of enabling cycle count

register is find at [6]. Modules are pieces of code that can be

loaded and unloaded into the kernel upon demand. They

extend the functionality of the kernel without the need to

reboot the system [16].

To load the gurpreet.ko module below command is used.

insmod gurpreet.ko

In a similar way, to remove a module, rmmod utility is used

by below command.

rmmod gurpreet.ko

Minicom is used for accessing the Linux board on Host PC.

Due to huge amount data is be analyzed, the file handing

capability of ‘C’ language is used.

7. STEPS FOR ANALYSIS

7.1 At Host PC Side:
1) Create Linux kernel loadable to enable performance

counter register.

2) To compile algorithm one by one for

 ARM Cortex A8 processor

 arm-cortexa8-linux-gnueabi- gcc algo1.c –o algo1

3) Transfer the kernel loadable

scp gurpreet.ko root@192.168.1.11:/home .

4) Transfer the object file(s) one by one to Board

scp algo1 root@192.168.1.11:/home .

5) Transfer the test vector file one by one to Board

scp LongMsgKAT.txt root@192.168.1.11:/home

http://www.ubuntu.com/

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.13, August 2015

26

7.2 At Board Side:
1) Type sudo – minicom to access the board.

2) Insert the module by typing below command insmod

gurpreet.ko

3) Check whether the module is inserted properly lsmod

4) Run object code (One by One).

 ./algo1

5) As per above steps it will give output.txt with message

length and no. of cycles consumed for that particular

algorithm.

At last again, scp 192.168.1.11/home /homeoutput.txt to

transfer the data from board to host PC for analysis purpose.

8. PRACTICAL RESULTS
The tables below shows cycles consumed for Blake 224, 256,

384 and 512 both for short and long messages. Due to large

number of readings, few readings have chosen where our

graphs changes abruptly.

Table 3: Summery of cycles consumed by Blake -224 and

Blake-256 for short messages:

Sr.

No.
Input Bytes Blake

224
Blake 256

1 0 15037 15067

2. 54 27380 27425

3. 121 39705 39786

4. 187 52211 52697

5. 249 64591 64776

Table 4: Summery of cycles consumed by Blake -384 and

Blake-512 for short messages:

Sr. No. Input Bytes Blake 384 Blake 512

1 0 49877 49404

2. 113 101159 101421

3. 129 94525 94753

4. 241 140343 140822

5. 255 140274 140451

Table 5: Summery of all Blake of Long Messages:

Sr.

No.

Input

Bytes

Blake

224

Blake

256

Blake 384 Blake 512

1. 256 70331 69282 151874 149404

2. 453 101721 102297 187323 188786

3. 650 138988 139047 279931 282588

4. 1138 225896 227279 462608 463970

5. 1957 388570 388827 765829 747974

6. 2257 450209 454639 834582 833362

7. 2713 538889 538196 1047965 1030138

8. 3548 701427 701913 1320269 1326058

9. 4131 813228 814152 1563979 1567978

10. 4288 852431 852252 1600076 1575554

Figure 6: Graphs for cycles consumed for Short

Messages.

Figure 7: Graphs for cycles consumed for long

messages

8.1 For Short Messages:
Blake 224 and Blake 256 are consume almost same cycles as

below:

- When input is up to 57 bytes then approximately 15037

cycles consumed.

-When input is above 58 bytes and below 121 bytes the cycles

consumed 1.7 times more from initial bytes.

-When input is above 121 bytes and below 187 bytes the

cycles consumed 2.4 times more from initial bytes.

-When input is above 187 bytes and below 256 bytes the

cycles consumed 3.2 times more from initial bytes.

-When input is above 256 bytes the cycles consumed 4.0

times more from initial bytes.

 Blake 384 and Blake 512 consume almost same

cycles as below:

- When input is up to 112 bytes then approximately 64204

0

20000

40000

60000

80000

100000

120000

140000

160000

0

2
0

4
0

6
0

8
0

1
0

0

1
2

0

1
4

0

1
6

0

1
8

0

2
0

0

2
2

0

2
4

0

BLK_224 BLK_256
BLK_384 BLK_512

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2
5

6

5
9

5

9
3

4

1
2

7
2

1
6

1
1

1
9

5
0

2
2

8
8

2
6

2
7

2
9

6
5

3
3

0
4

3
6

4
3

3
9

8
1

BLK_224 BLK_256

BLK_384 BLK_512

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.13, August 2015

27

cycles consumed.

- When input is above 112 bytes and below 127 bytes the

cycles consumed 3.72 times more from initial bytes.

- When input is above 129 bytes and below 240 bytes the

cycles consumed 2.69 times more from initial bytes.

- When input is above 241 bytes, the cycles consumed 2.17

times more from initial bytes.

8.2 For Long Messages:
Blake 224 and Blake 256 are consume almost same cycles and

Blake 384 and Blake 512 consume almost same cycles but

with linear characteristics with respect to input bytes.

- When input is 264 bytes then cycles consumed in Blake 384

and Blake 512 are 2.17 times more from Blake 224 and Blake

256.

- When input is 1075 bytes then cycles consumed in Blake

384 and Blake 512 are 1.96 times more from Blake 224 and

Blake 256.

- When input is 4233 bytes then cycles consumed in Blake

384 and Blake 512 are 1.89 times more from Blake 224 and

Blake 256.

9. ADVANTAGES AND

DISADVANTAGES OF BLAKE
The performance of Blake is fast in software and hardware

manner. Simple speed/confidence is trade-off with number of

rounds. There is also trade-off for hardware implementation

between parallelism and throughput/area. As per algorithm

design it is simple and interfaces of hashing with salt. For

security point of view Blake is resistant to length-extension,

generic second-pre image attacks and side-channel attacks.

As limitations, BLAKE-256 and BLAKE-512, Message

length is limited to respectively 264 and 2128 and Fixed points

found in less time than for an ideal function (but not

efficiently). It is also resistance to Joux’s multicollisions

which similar to SHA-2 .

10. CONCLUSION AND FUTURE

WORK:
The method of consuming cycles is very much same for 224,

256 output bytes and 384, 512 output bytes for short as well

as for long messages for Blake. For security point the

applications like password hashing etc., it’s better to use 256

instead of 224 and 512 instead of 384 because more byte

length provide more security with the equal utilization of

clock cycles.

This paper only BLAKE algorithm is evaluated from SHA-3

finalists. But there are other four SHA-3 finalists such as

Grøstl , JH , Keccak , Skein algorithms which can be

evaluated on ARM Cortex A8 and many other processor

architectures on which the performance analysis of algorithm

from ARM such as ARM Cortex A9, ARM Cortex A15 ,

PIC32 MIPS core processor , Power PC architecture from

some other architecture venders.

Memory footprint such as RAM, ROM utilization can also be

evaluated and further reduced with code optimization

techniques.

11. ACKNOWLEDGMENTS
With deep sense of gratitude we express our sincere thanks to

our esteemed and worthy Dr. G Geetha

Professor & Dean, Lovely Professional University, India, for

her valuable guidance in carrying out this work. At Last, we

thanks to management and staff of Imbuent Technologies

Pvt. Ltd. for guiding and allowing us to use their resources

for this work.

12. REFERENCES
[1] Forouzan Behrouz A. (2007),“Cryptography & Network –

Special Indian Edition”,TataMcgraw-Hill Publishing

Company Limited, New Delhi.

[2] Sobti Rajeev, Geetha G. (2012) , “Cryptographic Hash

Functions: A Review”, International Journal of

Computer Science Issues, vol. 9, 2, pp. 461-479.

[3] Stallings William (2006). “Cryptography and Network

Security”, Pearson Education, India.

[4] Andreeva Elena , Mennink Bart , Preneel Bart ,

SkroboMarjan (2012), “Security Analysis and

Comparison of the SHA-3 finalists BLAKE, Grøstl, JH,

Keccak, and Skein”, Proceedings of 5th International

Conference on Cryptology in Africa, Ifrance, Morocco,

vol. 7374, pp. 287-305.

[5] Jararweh Yaser, Tawalbeh Lo’ai, Tawalbeh Hala, Moh’d

Abidalrahman (2012) , “Hardware Performance

Evaluation of SHA-3 Candidate Algorithms”, Journal of

Information Security,vol. 3, pp. 69-76.

[6] Schwabe Peter, Yang Bo-Yin, Yang Shang-Yi (2012),

“SHA-3 on ARM11 Processors”,International

Conference on Cryptology in Africa, Ifrance,

Morocco,vol. 7374, pp. 324-341.

[7] Gibi Sunny, C Saranya (2014),“Cryptography Based On

Hash Function BLAKE 32 in VLSI”,

[8] Aumasson Jean-Philippe, Henzen Luca, Meier Willi, Phan

Raphael C.-W (2011)., “SHA-3 proposal BLAKE”

,Submission to NIST (Round 3), 2011. [online]

http://csrc.nist.gov/groups/ST/hash/sha3/Round3/submiss

ions_rnd3.html

[9] NIST (2015) “National Institute of Standards and

Technology competition Website” [online]

http://csrc.nist.gov/groups/ST/hash/sha-3/index.html

[10] Sloss Andrew, SymesDominic , Wright Chris , Rayfield

John (2004),“ARM System Developer’s Guide

Designing and Optimizing System Software”, Elsevier

Inc., San Francisco, CA

[11] Cortex™-A8 (2010) “Technical Reference Manual”,

2006-2010 ARM Limited. [online] http://www.arm.com/

[12] Cortex™-A Series (2012) “Cortex-A Series

Programmer’s Guide”, 2011, 2012 ARM

Limited.[online] http://www.arm.com/

[13] Helmke Matthew, Hudson Andrew, Hudson Paul (2012),

“Ubuntu Unleashed 2012 Edition”, Pearson Education,

Inc, USA.

[14] Hallinan Christopher (2010), “Embedded Linux Primer:

A Practical Real- World Approach -2nd Edition”,

Prentice Hall ,India.

[15] SDK Manual (2013) “OpenBoard-AM3359 Software

Development kit for Linux”, Release 1.0 January, 2013

[online] http://www.phytec.in/

[16] Corbet Jonathan , Rubini Alessandro, Kroah-Hartman

Greg (2005), “Linux Device Drivers, 3rd Edition”,

O’Reilly Media, Inc., Sebastopol, CA.

IJCATM : www.ijcaonline.org

