
International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.16, August 2015

1

Improvised Optimum Multilevel Dynamic Round Robin

Algorithm for Optimizing CPU Scheduling

Neetu Goel
Research Scholar,

Teerthanker Mahaveer University, U.P

R.B. Garg
Ex- Professor

Delhi University

ABSTRACT
CPU scheduling has strong effect on resource utilization as well

as overall performance of the system. In order to simulate the

behavior of multiple jobs in a multiprogramming computer

system needs to be specified. The most important aspect of job

scheduling is the ability to create a multi-tasking environment.

The intention should be allowed as many as possible running

processes at all time in order to make best use of CPU. Round

Robin algorithm performs optimally in timeshared systems,

but it is not suitable for soft real time systems, because it

gives more number of context switches, larger waiting time

and larger response time. The main objective of this paper is

to improve the previous OMDRRS with calculates intelligent

time slice and warps after every round of execution and

assumed that all the processes were come at randomly as well

as all the processes have priority. In order to simulate the

behavior of various CPU scheduling algorithms and to

improve Round Robin scheduling algorithm using dynamic

time slice concept, we purpose new improved CPU scheduling

algorithm called “Optimum Dynamic Round Robin

Scheduling” (OMDRR). Our experimental results show that our

proposed algorithm performs better in terms of reducing the

number of context switch, average waiting time and average

turnaround time.

Keywords
CPU Scheduling, Round Robin Scheduling, OMDRR, Context

Switch, Turn Around Time, Waiting Time

1. INTRODUCTION
CPU scheduling is somewhat similar to other types of scheduling

which have been studied over the years. CPU scheduling refers to

the decision of allocating a single resource among multiple

clients, the order of allocation and its duration. The primary

objective of scheduling is to optimize system performance in

accordance with the criteria deemed most important by the

system designers [1]. There are a number of such algorithms with

each having its respective advantages and drawbacks. In order to

determine the comparative and competitive advantages and

disadvantages of these algorithms, they need to be simulated and

their performance indices studied and used for better

understanding of operating system principles. The data that drives

the simulation can be generated in several ways. The most

common method uses a random number generator, which is

programmed to generate processes; CPU burst times, arrivals,

departures, and so on, by using probability distributions. The

scheduling simulator illustrates the behavior of scheduling

algorithms in opposition to a simulated mix of process loads. In

Round Robin (RR) every process has its equal priority and is

given a time quantum or time slice after which the process is

preempted. Although RR gives improved response time and uses

shared resources efficiently its limitations are larger waiting time,

undesirable overhead and larger turnaround time for processes

with variable CPU bursts due to the use of static time quantum

that motivates, to implement RR algorithm with dynamic burst

time concept.

To properly illustrate the functionality of various CPU

scheduling algorithm as well as the improvement of RR

scheduling called “An Optimum Multilevel Dynamic Round

Robin Scheduling Algorithm” (OMDRRS) and the effect of

each algorithm which it has on the execution of processes was

written using VB6.0 and the results of all algorithms were

collected and compared for the Turnaround time, Waiting time,

Context Switch & Gantt Chart. This paper is divided into four

sections. Section I gives a brief introduction on the various

aspects of the scheduling algorithms, the approach to the current

paper and the motivational factors leading to this improvement.

Section II presents an overview of some of the simulators that

are available and their respective drawbacks. Section III

presents the proposed algorithm and illustration of our proposed

new algorithm (OMDRRS). In Section IV, an experimental

analysis and Result of our algorithm (OMDRRS) and its

comparison with the static RR algorithm. Conclusion is

presented in Section V followed up by the references used.

2. RELATED WORK
OMDRRS[2] is visual basic simulator which calculates

intelligent time slice and warps after every round of

execution and assumed that all the processes were come at

same arrival time as well as all the processes have no priority.

Process Scheduling Simulator [3] is a java-based

web application that implements FCFS, SJF, Priority SJF and

Round Robin. It requires a high-speed internet connection to

load the applet, and also requires that Java software be either

installed or updated. Each input in the system is characterized

by its arrival time, CPU burst and I/O bursts. It claims to be

very efficient but a sample run disclosed that it is very slow.

Another simulator “CPU Scheduling Simulator (CPUSS)” [4],

CPUSS is a framework that allows users to quickly and easily

design and gather metrics for custom CPU scheduling

strategies including FCFS, Round Robin, SJF, Priority First,

and SJF with Priority Elevation rule. The long list of the

capabilities it can handle makes it too complex and

complicated for simple academic demonstrations and use by

non-computer geeks such as fresh students that are just taking

their first course in Computer Science. Above all, it runs in the

windows-DOS environment which is characterized by

unattractive user interface and hence, lacks user-friendliness. A

project that is very close to our work is a simulator presented

by [5]. However, this simulator was designed for a software

project scheduling rather than CPU process scheduling, hence

not relevant for our consideration in this study. MOSS, Modern

Operating Systems Simulators, was found in [6]. It is a

collection of Java-based simulation programs which illustrate

key operating system concepts presented in a textbook by

Tanenbaum (2001) for university students using the text. This

does not fit in to independent software that can be used freely

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.16, August 2015

2

without any such constraint. The best simulator we could find,

so far, during our survey of previous related work was presented

by [9]. It shows the implementation of a lightweight, simple,

robust and flexible tool for the comparative and experimental

study of two existing as well as an innovative probabilistic CPU

process scheduling algorithm, using Average Waiting Time

(AWT) and Average Turn-around Time (ATT) as the criteria for

performance evaluation. The tool was used to simulate the three

algorithms using eight datasets representing different scenarios

of processes with their burst times and respective locations on a

virtual queue. The limitation of the proposed software is that it is

meant for non- preemptive processes, hence not suitable for real-

time applications. However, it is not as robust as ours in the

sense that we implemented a Dynamic Round Robin algorithm

in addition to FCFS, SJF and ROUND ROBIN algorithms. Our

major objective is to simulate the behavior of various CPU

scheduling algorithms and to improve Round Robin scheduling

algorithm using dynamic time slice concept, called improvised

OMDRRS, which calculates intelligent time slice and changes

after every round of execution. So, we introduce the new

dynamic scheduling algorithm while using its excellent

comparison with FCFS, SJF, Priority and Round Robin as a

proof of the new algorithm's efficiency of Turnaround Time,

Waiting Time, Context Switch and desirability for academic

demonstrations and possible implementation in real-life systems.

3. PROPOSED ALOGRITHM: OMDRRS
 OMDRRS scheduling algorithm simulator is developed using

the Microsoft Visual Basic 6.0 Professional Edition’s Integrated

Developed Environment (IDE) under windows operating system

which can be used for study and for evaluation of CPU

scheduling algorithms in real time operating systems. Based on

the Processes data input and selected scheduling algorithm

FCFS, SJF, Round Robin, Preemptive SJF, Priority Scheduling

and the Dynamic algorithms were computed which display the

average turnaround time, average waiting time, context switch

and Gantt chart were automatically generated & displayed at

runtime. The user interfaces are simple, concise, unambiguous

and easy to use but complete only with the relevant information.

The inputs of burst time, Arrival Time & Priority are re- useable

for comparing with all other algorithms as well as simulator has

the facility to add new process at run time. The innovative

Dynamic algorithm is well implemented and its mode of

operation was clearly shown and presented in the simulator.

3.1 Our Revised Proposed Algorithm
Algorithm

When Arrival Time, Priority and burst time are given

In our algorithm, combines the working principle of

fundamental scheduling algorithms. Dynamically Time Slice

(DTS) is calculated which allocates different time quantum to

each process based on priority, shortest CPU burst time and

context switch avoidance time.

Step 1: Compute the factor analysis F= Burst time * 0.2

+ Arrival time * 0.3 + Priority of the process * 0.5

Step 2: Shuffle the processes in ascending order

according to the factor of each process in the ready queue

(RQ) such that the head of the ready queue contains the

lowest factor process based on the burst time, arrival time &

priority of the process.

Step 3:

(i) low= RQ(burst value of the first process),

high=RQ(burst value of the last process)

(ii) TQ=(low + high) / 2

Step 4: Assign the time quantum and apply for each process

say k=TQ.

Step 5: IF (burst time of the process < k)

{

 Allocate the CPU to that process till it terminates.

}

ELSE IF (Remaining burst time of the process <k/2)

{

 Allocate the CPU again to that process till it terminates.

}

ELSE

{

(i) The process will occupy the CPU till the time

quantum and it is added to the ready queue in

ascending order according to the remaining

burst time for the next round of execution.

(ii) TQ= TQ *2 or TQ=TQ/2

(iii) K=TQ

(iv) Goto Step 4

}

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.16, August 2015

3

3.2 Logic Diagram: When Arrival Time,

Priority and burst time are given

3.3 Simulation of OMDRRS Algorithm
In designing the simulator, it is important for each of the

processes to be as similar as possible, and include only those

variations which were specific to the algorithm being

implemented. The software was implemented to simulate the

operations of FCFS, SJF(Non Preemptive & Preemptive),

Highest Priority, Round Robin and Improving of Round Robin

scheduling algorithm. These algorithms were implemented in

order to establish a valid premise for effective comparison. The

simulation was run several times to ensure fairness to all

datasets and presented for each algorithm using Average Turn-

around Time, Average Waiting Time, Context Switch and

Gantt chart as the performance evaluation indices.

3.4 Comparison of OMDRSS Algorithm

with existing Algorithms
Table 1 shows the datasets started with a set of predefined

burst Time, Arrival Time & priority for each process in the

simulation. Graph1 depicts result of six scheduling algorithms

based on the Turnaround time, Waiting time & context Switch.

The number of processes can be extended to any length as

desired. For demonstration purpose, a maximum of 10 jobs

were implemented and reported in this research. However, the

maximum attainable number of jobs was not determined

because it totally depends on the Memory size.

Table 1: Processes with its Id, Burst Time, Arrival Time

and Priority

Process ID Burst

Time(ms)

Arrival

Time(ms)

Priority

P0 23 0 3

P1 34 5 1

P2 34 3 3

P3 12 6 4

P4 8 8 2

P5 10 4 5

P6 31 1 1

P7 23 2 4

P8 9 3 5

P9 16 6 1

3.5 Results and Discussions
Fig. 1 to 6 shows the main output screen of the simulator of all

the algorithms to perform FCFS, SJF(NP), SJF, Priroity, Round

Robin & OMDRRS automatically once we enter the burst time,

arrival time and priority of the processes based on the Table1.

The user can select by clicking the required Algorithm button

and automatically ATA, AWT, CS, RT and gantt chart will

disappear.

Fig 1: The Result Window for FCFS Algorithm

Is Burst time of

the Process < TQ
?

Yes Allocate the CPU to

that process till it

terminates

No
1

Is Remaining burst
time of the process Allocate the CPU again

< TQ/2
?

No
Yes

to that process
terminates.

till it

No

1

The process will add to the
ready queue in ascending for

the next round of execution.

The process will occupy the
CPU till the time quantum

Is flag=true
?

No

Yes
TQ= P*2
Flag= False

TQ= K
Flag=True

2

Is Queue is

empty

?

Yes
2

No 1

Stop

Shuffle the processes in ascending order in the ready queue

such that the head of the ready queue contains the lowest

Factor value which is based on the arrival time, burst time

& priority of the system. Flag=true

Start

Calculate TQ(Time Quantum)=

(i)

(ii)

TQ=(burst time of 1st process + burst time
of last process)/2

k=TQ

Assign the time quantum and apply for the process 2

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.16, August 2015

4

Fig 2: The Result Window for SJF(NP) Algorithm

 Fig 3: The Result Window for SJF(P) Algorithm

Fig 4:The Result Window for Round Robin Algorithm(TQ=8)

Fig 5: The Result Window for Priority Scheduling

Algorithm(TQ=8)

Fig 6:The Result Window for Dynamic Round Robin

Algorithm

Graph 1 shows the bar graph of comparison between of

FCFS, SJF(NP), SJf(P), PS, RR and OMDRRS based on the

result generated by the designed simulator. We plot the bar

diagram of processes using Turnaround Time, Waiting Time

and Context Switch criteria

Graph1: Comparison of CPU Scheduling Algorithms

We can see from the above experiment context switch, average

waiting time and average turnaround time both are reduced by

using our proposed algorithm. The reduction of context switch,

average waiting time and average turnaround time shows

maximum CPU utilization and minimum response time. We

observed that proposed algorithm much more efficient as

compared to simple RR algorithm.

4. CONCLUSION AND FUTURE WORK
A simulation has been described and used for comparative

analysis of various job scheduling methods with regards to

CPU efficiency, job turnaround time, context switch and the

job waiting time. Validation results showed that the simulation

runs were accurate. Round Robin has the highest average

waiting time and lowest CPU efficiency; therefore this

scheduling method also performs weakly with job throughput.

The waiting time is reduced as the time-slice size decreases in

the RR scheduling method, since the probability of an arrival in

any single time slice is very small. It is concluded that the

proposed algorithm is superior as it has less waiting response

time, usually less pre-emption and context switching thereby

reducing the overhead and saving of memory space. Future

work can be based on this simulator can be test on various

operating systems like Linux, Solaris, open BSD.

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.16, August 2015

5

5. REFERENCES
[1] Sukanya Suranauwarat, “A CPU Scheduling Algorithm

Simulator”, October 10-13, 2007, Milwaukee, WI 37th

ASEE/IEEE Frontiers in Education Conference.

[2] Goel N., Garg R. B., “A Simulation of an Optimum

Multilevel Dynamic Round Robin Scheduling

Algorithm”, International Journal of Computer

Applications , ISSN 0975 – 8887, Volume 76– No.7,

August 2013

[3] http://vip.cs.utsa.edu/classes/cs3733s2004/notes/ps/r

unps.html

[4] http://www.codeplex.com/cpuss

[5] F. Padberg, “A Software Process Scheduling Simulator”,

in Proc. of the 25
th

IEEE International Conference on

Software Engineering (ICSE’03), 0270-5257/03,2003

[6] http://www.ontko.com/moss

[7] D.A. Cardella, “A Simulator of Operating system Job

Scheduling”, Visual Basic 6. Available for download

http://www.freevbcode.com/ShowCode.asp?ID=407 9,2002

[8] S. H. Nazleeni, H. M. A. Anang, M. H. Hasan, A.

A.Izzatdin, and M. W. Wirdhayu, ”Time comparative

simulator for distributed process scheduling algorithms,”

World Academy of Science, Engineering and Technology

19, pp.84-89,2006

[9] Anifowose F. A., “MySIM: A Light-Weight Tool for the

simulation of Probabilistic CPU Process Scheduling

Algorithm”, International Journal of Computer and

Electrical Engineering, Vol. 4, No. 1, February 2012

[10] Umar Saleem and Muhammad Younus Javed,

“Simulation of CPU Scheduling Alogrithm”, 0- 7803-

6355-8/00/$10.00@2000 IEEE

[11] Sun Huajin’, Gao Deyuan, Zhang Shengbing, Wang

Danghui; “ Design fast Round Robin Scheduler in

FPGA”, 0-7803-7547-5/021/$17.00@2002 IEEE

[12] Md. Mamunur Rashid and Md. Nasim Adhtar, “ A New

Multilevel CPU Scheduling Algorithm”, Journals of

Applied Sciences 6 (9): 2036-2039,2009

[13] Goel N., Garg R. B., “A Comparative Study of CPU

Scheduling Algorithms”, International Journal of

Graphics Image Processing (IJGIP), Vol 2 issue 4, Dec-

2012

[14] Silberschatz, A. P.B. Galvin and G. Gagne (2012),

Operating System Concepts, 8th edition, Wiley India.

[15] Sabrian, F., C.D. Nguyen, S. Jha, D. Platt and F.

Safaei, (2005), “Processing resource scheduling in

programmable networks”, Computer communication,

28:676-687 Seltzer, M P. Chen and J outerhout, 1990,

“Disk scheduling revisited in USENIX”, Winter

technical conference.

IJCATM : www.ijcaonline.org

http://vip.cs.utsa.edu/classes/cs3733s2004/notes/ps/r
http://www.codeplex.com/cpuss
http://www.ontko.com/moss
http://www.freevbcode.com/ShowCode.asp?ID=4079%2C2002
http://www.freevbcode.com/ShowCode.asp?ID=4079%2C2002
http://www.freevbcode.com/ShowCode.asp?ID=4079%2C2002

