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ABSTRACT 

In this paper, a wind prediction system for the wind power 

generation using ensemble of multiple complex extreme 

learning machines (C-ELM) is proposed. The extreme 

learning machines is a single layer feed forward neural 

network having a fast learning and better generalization 

ability than the gradient-based learning methods. C-ELM is 

chosen as base classifier because it is very suitable for 

processing of non-linear data. For using the wind data in 

complex domain the wind speed and direction are represented 

as a complex number. This paper uses the elegant theory of 

conformal mapping to find better transformations in the 

complex domain for enhancing its prediction capability. 

Finally, to improve the generalization ability of the prediction 

system and to reduce the error encountered in single model 

predictors, an ensemble of multiple C-ELMS is used. The 

individual CELM model in the ensemble has different 

activation functions of the hidden  layer neuron. Performance 

analysis proves that the predictions generated through our 

method are effective when compared to other complex valued 

neural network prediction systems.  

Keywords 

Classification; Complex-Valued Neural Networks; Extreme 

Learning Machine  

1. INTRODUCTION 
The current statistics on environmental pollution clearly 

depicts a global scenario with increasing pollution due to the 

high carbon dioxide emission [1]. This has lead to a new 

search for energy sources that are renewable [2]. Wind energy 

is considered to be a valuable source that does not face the 

threat of exhaustion along with its usage. However, the main 

problem in generation of wind power is that most of the wind 

turbine generators do not match with the speed and direction 

of the wind. Such a problem can even lead to the failure of a 

wind power plant. Therefore a prediction system for speed 

and direction of wind can play a significant role in the damage 

protection and vibration control of wind turbines. 

Many works have been done in the field of wind prediction 

using neural network classifiers.However with the advance of 

many applications like radar processing, telecommunications 

etc where signals are inherently complex, much of the 

attention has been diverted to complex valued neural networks 

(CVNN). It has been proved by T.Nitta that CVNN has better 

generalization abilities [3]. The class of algorithms which uses 

the complex extreme learning machines, C-ELM  [4] as a part 

of their learning mechanism show far better classification 

abilities than the existing methods. Recently, a new C-ELM 

named as Circular-Complex valued Extreme Learning 

Machine (CC-ELM) [5] proposed by Savitha et al has proved 

to exhibit superior classification abilities among the existing 

complex-valued classifiers. This is mainly due to the effective 

transformation function and a Gaussian-like activation 

function that they used in their classifier. This work uses 

variant of C-ELM  which uses sech() activation function at 

hidden layer.  

A conformal or holomorphic mapping is a complex mapping 

that has the capability of taking every point in a complex 

plane onto another complex plane. The conformal mapping 

defined as w = f(z) has the property of preserving the local 

angle during mapping including the shape of very small 

figures. However, size cannot be preserved in such a mapping.  

Thomas L. Clark in [6] has mentioned that the elegant theory 

of conformal mappings can be used to find other neural and 

analytic functions for  non-linear mapping in the complex 

plane. The advantage of using a holomorphic transformation 

function/activation function is that, we can utilize the 

conformal nature in total neural transform [7]. It has also been 

mentioned in [8] that the conformal mappings can also 

preserve the direction relationship of crossing two boundary 

curves in classification or prediction tasks.    

An ensemble can be considered as an assembly of single 

model neural networks that exhibit diversity across the 

network by either varying the learning algorithm or varying 

the data provided to each model etc [9]. The first ensemble 

technique was introduced in literature by Hanson and Salmon 

[10]. A CVNN has better prediction making capabilities and 

ELMs have a fast learning rate, an ensemble based on 

multiple CELMs can reduce the error of the whole system and 

generate more accurate predictions. Even though various 

ensemble techniques are present, the dominating method 

remains to be Bagging along with its variants [11].  

In this work, which we term as Holomorphic based Multiple 

Complex  Extreme Learning Machine (MH-CELM) we have 

treated the wind information comprising of wind speed and 

direction as a complex number on the complex co-ordinates. 

This data is then transformed into another complex plane 

using the concept of conformal mapping with the function 

w=sin (z). The transformed data is then processed by the four 

complex valued extreme learning machines, with different 

activation functions.   

The rest of the paper is organized as follows. In Section 2, the 

related work is described followed by Section 3 which 

explains the basic complex-valued extreme learning machine 

algorithm and the Bagging algorithm. Section 4 describes in 

detail the proposed work and its algorithm. The experimental 
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evaluation and analysis is given in Section 5 and finally 

conclusion is presented in Section 6. 

2. RELATED WORK 
Various neural network methods of time series forecasting  

predicting have been utilized for the wind speed and direction. 

However, the work in complex-valued neural networks[12-

15] is limited but effective than their real valued counterparts. 

In [12], Takahiro et al presented a CVNN for predicting the 

wind speed and direction for a wind power generation system. 

The wind speed and direction were represented as a complex 

number on the complex co-ordinates for generating an input 

to the CVNN. The CVNN was trained using a complex back 

propagation algorithm during training for predictions. The 

paper vividly showed how the orthogonal decision boundaries 

of a complex plane can aid in predictions. 

An Augmented Complex Least Square (ACLMS) method was 

proposed for wind prediction in [13]. It combines the uses of 

the augmented complex statistics with the complex-valued 

wind prediction methods. The algorithm brings together the 

concepts of linear adaptive forecasting in complex domain 

along with some new complex statistics.   

Savitha et al proposed a Complex neuro-fuzzy inference 

system (CNFIS) for wind prediction in [14]. In this paper, a 

CNFIS was designed using a gradient descent learning 

algorithm using the Wirtinger calculus. They proposed a 

prediction system that realizes zero-order Takagi-Sugeno-

Kang based fuzzy inference system. The CNFIS takes the 

advantages of the approximation abilities of neural networks 

and the data representability of the fuzzy inference systems. 

The method was proved to predict more accurately than the 

ACLMS prediction.  

Another work worth to be mentioned in the wind forecasting 

methods using complex valued neural networks is the one 

which uses a Meta-Cognitive Fully Complex-valued neural 

network [15]. In this prediction method, a Fully Complex-

valued Radial Basis Function (FC-RBF) [16] network works 

as the cognitive part and a self-regulatory learning method is 

the meta-cognitive component. In par with the knowledge 

acquired by the cognitive component and the information in 

each new sample, the meta-cognitive network decides in each 

epoch what the network should learn, when to learn and how 

to learn. The method proved to work better in predictions than 

that of FC-RBF predictions and real-valued ELM predictions. 

3. SYSTEM FOR WIND SPEED & 

DIRECTION FORECASTING 

3.1  Representation of wind speed and 

direction in MH-CELM 
The inputs to the proposed MH-CELM should be purely in 

complex form. Since we have to predict the wind speed and 

direction this data must be represented in the form a complex 

number[13]. Let the wind speed and direction at t-th hour be vt 

and φt respectively. The complex representation of this data, 

z(t) will be of the form as below: 

z(t) = vtcos φt  + vtsin φt                  (1) 

Real part of z(t) can be defined as Re(z(t)) = vtcos φt  and the 

imaginary part, Im(z(t)) =  vtsin φt .  As depicted in the figures 

1 and 2, real part and imaginary parts of z(t) are nothing but 

the south-north and east-west components of the velocity of 

the wind.  

       

Figure 1: Speed and direction the the wind 

                                                                                                                                                                                                                            

Figure 2: Complex representation of wind data 

3.2 Variant of Complex-valued Extreme 

Learning Machine  

The C-ELM is a single layer feed forward neural network 

(SLFN)[4] where the parameters between input and hidden 

layer are initialized randomly and the weights between hidden 

and output layer are obtained analytically 

Let us assume that we have N training samples of the form 

(zi,yi) where i = 1,2,3,……, N and zi  Cn
 and yi  Cm. In this 

paper, we use a variant of C-ELM with a fully non-linear 

complex-valued activation function gc(u,v,z) in the hidden 

layer of neurons.  

h = gc(uj
T(zt – vj)); j = 1,2,…, K  (2) 

Here uj ,vj  Cn are complex-valued scaling factor and 

complex-valued center of the j-th hidden neuron respectively. 

The activation function used in the output layer of the C-ELM 

is linear in behavior. The variant of C_ELM differs from 

original CELM only in the activation used at hidden layer. 

Variant of CELM uses sech() activation function. The actual 

output on of the C-ELM network with K-hidden neurons and a 

non-linear activation function in the hidden layer g(u,v,z) can 

be defined as:  

             
 
       (3)  

where wnj is the weight vector containing the weights 

connecting the n-th output neuron to the j-th hidden neuron. 

This equation can be also represented as: 

             (4) 
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where W is the matrix containing the weights connecting the 

hidden layer and output layer neurons and  H is the matrix 

with the outputs of the hidden layer which is defined below: 

H(u1,u2,…,uk , v1, v2,…., vk ,z1,z2,…,zN)= 
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The K × N matrix H is known as the complex hidden layer 

output matrix.  

4. PROPOSED WORK: Holomorphic 

based Multiple -Complex Extreme 

Learning Machine (MH-CELM) 

4.1.Conformal/Holomorphic Mapping 

Conformal mapping can be defined as a transformation 

function  

w =f(z) 

and wind data is represented in complex form as  

           z(t) =a+it = vtcos φt  + vtsin φt   

 

Figure 5: MH-CELM model 

Now the task is to find out a complex function w=f(z) such 

that the  complex wind data z will take a configuration 

consisting of points, lines, angles and regions in the complex  

z- plane   and convert it into a simple and more readily 

analyzable configuration in the complex w-plane[17]. A 

holomorphic mapping w=f(z) in a Domain D is called 

conformal at z=z0 when it satisfy following  two properties. 1. 

z is analytic in the Domain D and f ‘(z0) ≠ 0 2. The angle 

between any two intersections in the z-plane is equivalent to 

the angle of image arcs in the w-plane [17]. Let f:D→C be a 

holomorphic map on an open set. If a curve in D is 

parameterized by z=z(t) then w=f(z(t)) describes the image 

curve in the w-plane. Let z0 D and C1:[-1,1]→D and C2:[-

1,1]→D be two path which meet z0=C1(0)=C2(0). The 

meeting point of original curve is defined as : 

Θ =       
      -        

    =    
   

    

   
    

 

The confomal mapping of the curve f(C1) and f(C2) meets at 

the f(z0) at the angle  

  =           
    –         

     

    =    
      

    

     
    

  =    
           

    

           
    

        

 [By the Chain rule] 

=    
        

    

           
    

    [as C2(0) =C1(0) =z0  ] 

=    
   

    

   
    

 = Θ 

So ,Conformal mapping of a complex variable is angle 

preserving and sense preserving which convert the input data 

of z-plane into w-plane.Due to this  Conformal mapping can 

be used for complex transformationof data for further 

analysis. To apply this elegant theory a conformal function 

w=f(z)= sin(z) is selected which hold two essential property 

of holomorphic function and transform the input data into 

more analyzable form due to orthoganality of hyperplane in 

w-plane.the proofits orthogonality and analyticy isgiven 

below : 

1. f’(z)=cos(z) , f is analytic at all points in the region where 

it has non zero derivative [17]. Since wind speed and 

directions are finite values so it must be analytic in the 

given region. Louivilles’s theorem [18] proves that any 

analytical and almost bounded function can be used for 

transformation purpose in the complex domain 

2. for image transformation in w-plane ,angle preserving  

for function w=Sin(z) can be described from the 

fundamental region of trigonometric functions[18]. For 

the function sin(z), a line x=a,exists inside the region 

within vertical strip –
 

 
   

 

 
   can be presented by  

z(t) =a+it = vtcos φt  + vtsin φt   
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From trigonometric properties we know that  

sin(z)= SinxCoshy +iCosxSinhy    So, 

u+iv  = Sin(a+it) = SinaCosht +iCosaSinht 

           = Sin vtcos φt.Cosh vtsin φt  +iCos vtcos φt                       

.Sinh vtsin φt    

From the identity,                 
  

           
 

  

           
     

The image of line x=a of w plane is therefore a hyperbola 

with   Sin vtcos φt as an u-intercept.Similerly the 

horizontal line segment x=b of z-plane will map into w-

plane as: 

 

 
  

       
 

  

       
     

Horizontal line of z-plane mapped as an elipse in w-

hyperplane. Therefore hyperbolas and ellipses are 

orthogonal since they are the images of orthogonal 

families of horizontal and vertical lines. [3] has proved 

that a complex function which have orthogonal boundary 

in a complex plane  have a better decesion making 

capability .so elegant orthogonal conformal mapping of 

the function w=Sin(z) can be used to enhance the 

weather prediction capability using the wind data set and 

C-ELMs. The transformation of complex function is 

depicted in figure 3 and figure 4[18].  

 

 
 

Figure 3.Image of Complex z as vertical strip 

 

 
 

Figure 4.Conformal mapping w=Sin(z) Orthogonal 

families of hyperbolas and ellipses 

 

4.2. Multiple complex activation functions 

in MH-CELM 
For a CVNN, the activation function must be both analytic 

and bounded which are the essential properties of a CVNN 

activation function as per pointed out by T. Nitta in [3]. 

The choice of a non-linear complex activation function plays 

a very vital role and finding such a function is a very tedious 

job. This is because there occurs a conflict in the boundedness 

and differentiability of complex functions in a complex plane 

as in Louivilles’s theorern [18]. As in [18], a bounded 

function in a complex domain is constant. Thus for a complex 

activation function the aim is find those functions in the 

complex domain that are almost bounded. This limits the 

number of non-linear activation functions for a CVNN.  

It was then proved in [20] that complex hyperbolic functions 

like tanh z, sinh z and trigonometric function like  can be used 

as a fully complex valued activation function. It outperforms 

many other non-linear activations used mainly because it’s 

bounded and well defined derivates meet the Cauchy- 

Riemann equations almost everywhere in the complex 

domain. In a recent paper by Savitha et al [16]. sech z  has 

been proved as a more better complex activation function to 

be employed in a CVNN. In general, using circular, inverse 

circular, hyperbolic and inverse hyperbolic functions are 

almost bounded and also analytic qualifying them for the job 

of non-linear complex activation functions to be used in a 

CVNN. 

It has been already mentioned before that for better prediction 

accuracy, an ensemble must have a proper diversity across the 

individual models and also it must implement an appropriate 

technique to gather the predictions from the individual C-

ELMs and give a proper output with accuracy. In MH-CELM, 

the output is predicted through an ensemble learning 

algorithm known as Bagging. Bagging (Bootstrapped 

Aggregating) trains the ensemble by providing a new 

randomly selected data for each C-ELM in the ensemble from 

the training dataset. This is choosing is done by randomly 

replicating the dataset for each C-ELM. The size of the 

replicated dataset can be same as that of the original or less 

than that. The selection is made with replacement. Apart from 

the diverse activation functions in each C-ELM, providing 

different data to each of them increases the diversity of the 

ensemble enabling it to predict the outputs more precisely.  

The operation of a MH-CELM can be thus summarized as 

follows. To obtain superior ensembles the task is how to 

establish a diverse and precise prediction algorithms and how 

to combine their results. [24] has mentioned that four different 

type of activation function can increase the diversity of 

ELM’s. So, With the activation functions tan, sech, tan and 

sinh , MH-CELM consists of four basic C-ELMs to which 

data is provided after converting into complex numbers 

followed by a conformal mapping. Each C-ELM in the 

ensemble has 10 hidden neurons which has been selected 

using cross fold validation method [5] and they employ a 

different non-linear complex activation function that is almost 

bounded and analytic. In the training phase, the dataset is 

randomly replicated for each C-ELM to train in a diverse 

manner. During the testing phase, unknown instances are 

provided for which each C-ELM predicts an output. The final 

output is predicted through averaging of each output from the 

ensemble. The pseudo code of the proposed MH-CELM 

ensemble is given in Table No. 1.  
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Algorithm 1: MH-CELM 

Input: A training set N = {(  
     ,   

     ) | 

  
         

        }, testing set T = {(  
    ,   

    ) | 

  
        

       }, 

            the hidden node activation function G(u,v,z), No. of 

hidden nodes L, No. of trial K 

Output: final prediction by learning algorithm MH-CELM = 

avg{Result} 

 

Training phase 

1. Set k =1  

2. Apply a conformal transformation upon the 

dataset, w = sin(z) 

3. while (k ≤ K) do  

4.   Set i = 1 

5.    while (i ≤ 4) do  

6.     Randomly assign learning parameter uj(k,i), 

vj(k,i)  j=1,2, ….. , L of the i-th C-ELM for the k-

th          ensemble                                     

7.     Calculate the hidden layer output matrix H(k,i) 

8.     Calculate the output weight W(k,i), W(k,i) = 

YH(k,i)†, where Y is the target matrix 

9.     i = i + 1 

10.    end while 

11.  k = k + 1 

12.  end while 

 

Testing phase 

1. Apply a conformal transformation upon the test 

dataset T, w = sin(z) 

2. Set k = 1 

3. while (k ≤ K) do 

4.    Set i = 1 

5.      while (i ≤ 4) do 

6.        Using the (k,i)th trained basic C-ELM with 

learning parameter (uj(k,i), vj(k,i), wj(k,i)) j=1,2,…., 

L  

         to predict target output of testing sample. 

7.        outputi = output of testing sampling ztest
 using 

(k,i)th C-ELM 

8.        i=i+1 

9.      end while  

10.    Resultk = avg (output) 

11.    k=k + 1 

12. end while 

Table 1: MH-CELM Algorithm 

5. EXPERIMENTAL STUDY AND 

RESULT ANALYSIS 
In this section, the results of the wind speed and direction are 

presented. Five different datasets obtained from Iowa (USA), 

Department of Transport [21] are used throughout the 

experiments. The datasets consist of wind speed and direction 

of five different wind power stations obtained from 1st
 January 

2011 to 28th February 2011. For verifying the validity of 

results we have used different number of training and testing 

instances. The detailed descriptions about the datasets that are 

used in the experiments are given in Table 2. 

The experiments conducted can be classified into four 

categories: 

1. Comparison of the predicted results using MH-CELM 

with the original data series for both wind speed and 

direction. This is to show that the predictions of MH-

CELM are stable with the original data series. 

Station 

name 

Training 

instances 

Testing 

instances 

Min 

Spee

d 

(m/s

ec) 

Max 

Spee

d 

(m/s

ec) 

Mea

n 

Spee

d 

(m/s

ec) 

Std 

dev 

Washingt

on 

719 648 0 7.5 2.42

42 

1.32

22 

Algona 410 300 0 7.77

8 

2.18 0.41 

Clarion 510 200 0 7.77 2.17 0.42

03 

Sheldon 190 129 0 1 0.37

81 

0.07

42 

Oskaloss

a 

900 488 0 8.88

8 

2.25

62 

0.42

43 

Table 2: Description of wind datasets of various wind 

power stations 

2. Comparison of the predictions of MH-CELM with H-

CELM (Holomorphic-CELM without ensemble) and C-

ELM for various parameters including NMSE, RMSE, 

coefficient determinant and prediction gain. This 

experiment proves that the proposed ensemble can attain 

better results in comparison to single model complex 

valued neural networks.  

3. Comparison of MH-CELM with various other prediction 

systems in literature. This helps to prove that the 

proposed method is better than many other already 

proposed methods.   

4. Comparison of MH-CELM with H-CELM and C-ELM 

by varying the number of trials in terms of RMSE, 

NMSE and prediction gain. 

For conducting the experiments the input to the MH-CELM is 

passed through a moving average. The dataset consists of 

hourly data and for analyzing the hourly data the input vector 

F is organized as consisting of five data points F1, F2, F3, F4, 

F5 as follows. 

F = {F1, F2, F3, F4, F5} = {X(ti), MA2, MA3, MA5, MA10} 

Here X(ti) is the current ith hour wind speed and MA2, MA3, 

MA5, MA10are the moving averages of 2, 3, 5 and 10 

hours.The simple moving average can be described as the 

unweighted mean of the previous n points. Therefore if we 

want to get the moving average of previous n hours then the 

formula is as follows: 
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MAn = 
                      

 
     Where          is the value 

of current hour. 

The moving average is taken rather than the simple average 

because it ensures that variations in the mean are aligned with 

the variations in the data rather than being shifted in time. 

Thus, the MH-CELM takes the input vector F and predicts the 

wind speed or direction of i+1th hour. 

5.1 Comparison of MH-CELM prediction 

with the original wind speed and direction    

time   series 
In this section the MH-CELM is used to predict the wind 

speed and direction using the five different datasets that is 

given in Table 4.12. The MH-CELM is first trained using 

training instances and then the predictions are tested using the 

testing instances. Since Range normalization gives better 

prediction [5],The training and testing data is normalized in 

the range of [0,1].The number of training and testing instances 

is also specified for each dataset in Table 2. The predictions 

made by MH-CELM with the original values are compared 

and graphically presented in Figures 6 to 15 for all the five 

datasets. 

The figures clearly indicate that the predictions have the same 

fluctuations as per the original wind speed and direction time 

series. This proves that the MH-CELM predictions can help 

the wind turbines to stabilize themselves against the various 

fluctuation based on the previous data values. 

 

Figure 6.  Wind speed prediction for Washington dataset 

Figure 7: Wind direction prediction for Washington 

dataset 

 
Figure 8: Wind speed prediction for Algona dataset 

 

Figure 9: Wind direction prediction for Algona dataset 

 
Figure 10: Wind speed prediction for clarion dataset 

 

Figure 11: Wind direction prediction for clarion dataset 
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Figure 12: Wind speed prediction for Sheldon dataset 

 

Figure 13: Wind speed prediction for Oskalassa dataset 

 

Figure 14: Wind direction prediction for Oskalassa 

dataset 

 

Figure 15: Wind direction prediction for Sheldon dataset 

5.2  Comparison of MH-CELM with single 

model complex-valued neural networks 
The proposed method for wind prediction consists of an 

ensemble of complex-valued neural network with conformal 

mapping. The basic idea that drives this method is that 

ensembles can generalize the predictions and minimize the 

risk of error in single model complex-valued neural network. 

To show that the ensemble method is far better for predictions 

in comparison to the single model neural network predictors 

experiments were conducted on the predictions of MH-

CELM with Simple Complex valued Extreme learning 

machine (C-ELM) [4] and C-ELM with holomorphic 

mapping. For showing that the results for MH-CELM are far 

better than the single models five parameters [13, 15, 22] are 

chosen whose description is detailed below:  

Normalized Mean Square Error (NMSE): The NMSE is a 

measure to check the deviation between actual and predicted 

value. 

     
                   

            
 

            
  Where k is the number of sample 

to be forecasted ,yk is the real signal value.      is the predicted 

value and       is the mean of the data.  

Coefficient of multiple determination: the value of  r closed to 

unity indicates perfect prediction. 

r2=1 - 
                   

            
 

            
   

MAE: It is an average of absolute error between original and 

predicted value and it is defined as 

    
 

 
         

RMSE: it is defined as an expected value of the quadratic or 

squared error loss and measures as the square root of the 

average of square of the errors. 

      
             

    
 

Prediction gain:            
  

 

       
      

Where   
    denotes the variance of the input signal y,       

  

denotes the estimated variance of the   forward prediction 

error e. 

With these parameters predictions were made with the five 

dataset for MH-CELM, H-CELM and C-ELM and the results 

are tabulated in the Tables 3-7. As for NMSE, all the five 

datasets show high value for C-ELM followed by H-CELM 

and then MH-CELM. This indicates that although conformal 

mapping can reduce the NMSE of CELM constructing an 

ensemble can further reduce the error. Also all the results 

have a lower NMSE value for H-CELM than for C-ELM. 

This further shows the significance of holomorphic mapping 

in arranging the data for predictions. The Washington dataset 

shows lower NMSE than any other dataset experimented 

followed by Oskalassa dataset and Clarison dataset shows a 

higher difference in the NMSE values between MH-CELM, 

H-CELM and C-ELM with MH-CELM outperforming both 

H-CELM and C-ELM.   



International Journal of Computer Applications (0975 – 8887) 

Volume 123 – No.18, August 2015 

31 

The coefficient of multiple determinations has to have higher 

values for a far improved prediction capability and unity value 

is called perfect prediction. The MH-CELM exhibits values 

that are higher than H-CELM and C-ELM in all the datasets 

tested with H-CELM having better values than C-ELM. The 

Washington datasets have higher values r. however significant 

improvement in coefficient of multiple determinations can be 

seen in Clarion dataset.The MAE and RMSE values show 

similar trends throughout the experiments. The RMSE and 

MAE value is the lowest for the MH-CELM rather than H-

CELM and C-ELM. This proves that an ensemble can always 

minimize the error of single model neural network models 

because the NMSE, RMSE and MAE of MH-CELM are 

significantly lower than H-CELM and C-ELM.Higher values 

of predictive gain indicate better predictions for a prediction 

model. From the results it can be seen that the gain for MH-

CELM is better than that of H-CELM and C-ELM. 

Thus it can be inferred that construction of an ensemble has 

significantly increased the prediction capability of the wind 

prediction model. Also the results further emphasize the 

importance of holomorphic mapping in making the data 

readily analyzable for the prediction system. 

 NMSE Coff deter(r) MAE RMSE Gain_Rp 

CELM 0.198 0.801 0.0390 0.0471 7.158 

H-CELM 0.192 0.8070 0.0383 0.0465 7.305 

MH-CELM 0.185 0.8144 0.0378 0.0334 7.686 

Table 3:Performance result of Washington dataset 

 NMSE Coff 

deter(r) 

MAE RMSE Gain_Rp 

CELM 0.136 0.8632 0.0736 0.0975 8.735 

H-CELM 0.123 0.8768 0.0728 0.092 9.138 

MHCELM 0.113 0.8867 0.0713 0.0853 9.850 

Table 4: Performance result of Algona dataset 

 NMSE Coff 

deter(r) 

MAE RMSE Gain_Rp 

CELM 0.3052 0.6947 0.0613 0.0746 5.6013 

H-CELM 0.2939 0.7060 0.0602 0.0731 5.8006 

MH-CELM 0.2728 0.7271 0.0586 0.0626 6.4514 

Table 5: Performance result of Clarion dataset 

 NMSE Coff 

deter(r) 

MAE RMSE Gain_Rp 

CELM 0.1553 0.8446 0.0332 0.0411 8.1674 

H-CELM 0.1598 0.8401 0.0337 0.0417 8.0444 

MH-

CELM 

0.1540 0.8459 0.0333 0.0322 8.3645 

Table 6: Performance result of Oskalassa dataset 

 

 NMSE Coff 

deter(r) 

MAE RMSE Gain_Rp 

CELM 0.2324 0.7675 0.0551 0.0715 6.9760 

H-CELM 0.2362 0.7637 0.0566 0.0721 7.0390 

MH-

CELM 

0.2526 0.7473 0.0594 0.0612 7.2265 

Table 7: Performance result of Sheldon dataset 

5.3 Comparison of MH-CELM with other 

learning algorithms in literature 
The results in Section 5.2 were able to prove the performance 

overhand of MH-CELM ensembleover other single model 

complex valued neural network prediction systems like H-

CELM and C-ELM. To further study the prediction capability 

of MH-CELM experiments were conducted to compare the 

RMSE of MH-CELM with other complex-valued neural 

network learning algorithms in literature. Table 8 depicts the 

learning algorithms used for comparison with the number of 

hidden layer neurons (NHN) and their corresponding RMSE. 

The learners compared with MH-CELM are ELM (Extreme 

Learning Machine) [23], FC-RBF () [16], Mc-FCRBF () [15], 

CELM [4] and H-CELM. The results of ELM, FC-RBF and 

Mc-RBF are reproduced from. 

The results in Table 8 vividly demonstrate that the RMSE of 

MH-CELM is the minimum among all the other prediction 

models in comparison. The ELM presented is a real valued 

Extreme Learning Machine. The FC-RBF has a Gaussian type 

radial basis function as the activation function in the hidden 

layer and uses gradient descent based learning algorithm. The 

lower RMSE value of ELM in comparison with the FC-RBF 

demonstrates the efficiency of extreme learning machines in 

learning and their ability in minimizing error.  

The Mc-FCRBF consists of two components: a cognitive and 

a meta- cognitive component. A Fully Complex-valued Radial 

Basis Function (FC-RBF) network is the cognitive component 

and a self-regulatory learning mechanism is its meta-cognitive 

component. In each epoch of the training, when the sample is 

presented to the Mc-FCRBF network, the meta-cognitive 

component decides what to learn, when to learn, and how to 

learn based on the knowledge acquired by the FC-RBF 

network and the new information contained in the sample. 

This approach is proved to have better prediction capability 

with minimum RMSE when compared to both ELM and FC-

RBF. It is seen in Table 8 that C-ELM has a lower RMSE 

than FC-RBF, but still higher than the other models in 

comparison. But using a conformal mapping to configure the 

input data in H-CELM has brought the RMSE close to Mc-

FCRBF. This further underlines the significance of conformal 

mapping. However, combining the concept of conformal 

mapping with that of ensemble has produced the minimum 

RMSE of all the prediction models as can be seen in Table 8.  

Learning algorithm NHN RMSE % 

ELM 15 9.3 

FC-RBF 15 12.56 

Mc-FCRBF 15 9.25 

CELM 10 9.7514 

H-CELM 10 9.2849 

MH-CELM 10 5.501093 

Table 8: Comparison with other learning algorithms 
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5.4 Comparison of MH-CELM with H-

CELM and C-ELM in terms of RMSE, 

NMSE and prediction gain for varying 

number of trails  
In this section, the main objective is to compare the 

performance metrics like RMSE, NMSE and prediction gain 

for varying number of trails. This is done for MH-CELM, H-

CELM and C-ELM to further ensure the efficiency of MH-

CELM. The experiments are carried out on Washington 

dataset. The Washington dataset because it uses a higher value 

for the number of instances trained and tested. The results are 

graphically represented in Figures 16-18. 

The comparisons of MH-CELM, H-CELM and C-ELM for 

average RMSE can be seen in Figure 16. The graph shows 

that while C-ELM and H-ELM have instable variations 

throughout the number of trials the MH-CELM has 

significantly minimum values than H-CELM and C-ELM 

throughout the experiment.  

The Figure 17 vividly demonstrates how large prediction gain 

is attained by MH-CELM in comparison with H-CELM and 

C-ELM. Also, the H-CELM has better prediction gain than C- 

 

Figure 16: Average RMSE of Washington data set varying 

no. of trial 

 

Figure 17: Forward prediction gain of Washington data 

set varying no. of trial 

 

Figure 18: Average NMSE of Washington data set varying 

no. of trial 

ELM in most of the points again reinstating the fact that 

conformal mapping of input data is important to make data 

more analyzable for prediction.The NMSE results are 

presented in Figure 18 and can be seen that almost follows the 

same pattern as that of the RMSE graph. The NMSE of MH-

CELM is both minimum and almost constant along with the 

number of trials.  

The results shown in the graph is a proof to the fast learning 

ability, lower error rates and generalization capability of 

ensembles and also the better prediction capabilities of 

complex valued neural networks. However still variation in 

the performance exists in the figure 16-18.this is because of 

random parameter used in each CELM for the initialization of 

scaling parameter, center of neuron and the weight between 

hidden and output layer. 

6. CONCLUSION 
In this paper a method Holomorphic based multiple complex 

extreme learning machine (MH-CELM) has been applied for 

wind’s speed and direction forecasting. At first wind speed 

and direction has represented in complex coordinates and then 

a Conformal transformation has applied to map the complex 

valued data in more convenient and simple complex plane. By 

varying the activation function each sample is presented to 

different ELMs to achieve better generalized prediction. And 

finally Bagging method has applied to combine the result of 

ensembles. Performance of MH-CELM shows better 

prediction compared to real valued ELM, FC-RBF and a 

single model of C-ELM. This proves the significant use of 

conformal mapping in complex learning algorithm. 
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