
International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.2, August 2015

9

Design and Implementation of Anti Spyware System

using Design Patterns

Mohamed Adel

Sheta

Military Technical
College

Mohamed Zaki

Al-Azhar University

Kamel Abd El Salam
El Hadad

Military Technical
College

H. Aboelseoud M.

Military Technical
College

ABSTRACT

Spyware is considered as a great threat to confidentiality that

it can cause loss of control over private data for computer

users. This kind of threat might select some data and send it to

another third party without the consent of the user. Spyware

detection techniques have been presented traditionally by

three approaches; signature, behavior and specification based

detection techniques. These approaches were successful in

detecting known spyware but it suffers from some drawbacks

such as; the need for updating data describing the system

behavior to detect new or unknown spywares, and the high

level of false positive or false negative rate. Therefore, in this

paper we introduce a proposed anti spyware system design

and implementation using design patterns for detecting and

classifying spyware. This proposed approach can be reusable

and modifying itself for any new or unknown spyware.

General Terms

Computer security

Keywords

Spyware, Design patterns

1. INTRODUCTION
Malicious codes (malware) which were designed by hackers

include multiple attacking methods such as data intercept and

denial of service (DoS) attacking. These malicious codes

spread using the weak spot of certain program, and zero day

attack is expected. Malware contains virus, worm, Trojan

horse and spyware [1]. First, virus is a contagious computer

program that can copy itself and infect another computer.

It spreads from one computer to another in some form of

executable code when its host is taken to the target computer;

for example when a user sends it over a network or the

internet or carried it on a removable medium [2]. Second,

worm is a self replicating malware computer program. It

spreads through a computer network by sending copies of

itself to other computers on the network and it may do so

without the interference of any user. Unlike a virus, it does

not need to be attached to any program. Worms almost always

cause high network traffic, even if only by consuming

bandwidth, whereas viruses almost always damage or modify

files on an infected computer [3].

Third, Trojan horse is a malware that seems to perform a

desirable function for the user before run or install but instead

facilitates illegal access of the user's computer system. "It is a

harmful piece of software that looks legitimate. Users are

typically tricked into loading and executing it on their

systems", as Cisco describes. The term is originated from the

Trojan horse story in Greek mythology [4]. Finally, according

to the Department of Computer Science and Engineering at

the University of Washington, spyware is defined as

“software that gathers information about use of a computer,

usually without the knowledge of the owner of the computer,

and relays the information across the internet to a third party

location”. Another definition of spyware is given as “any

software that monitors user behavior, or gathers information

about the user without adequate notice, consent, or control

from the user” [5].

Unlike viruses, spyware is usually installed with the user’s

approval, since it provides some useful functionality either on

its own or by another software application. That's why

spyware extends beyond the boundaries of what is considered

legal and illegal software and thus falls in a grey zone. The

installed spyware may be capable of capturing keystrokes,

taking screenshots, saving authentication credentials, storing

personal email addresses and web form data, and thus may

obtain behavioral and personal information about users [5]. It

may also communicate system configuration including

hardware and software, system accounts, location

information, and information about other aspects of the

system to a third party. Spyware may, e.g., show

characteristics like nonstop appearances of advertisement

pop-ups, open a website or force the user to open a website

which has not been visited before, install browser toolbars

without seeking acceptance from the user, change search

results, make unexpected changes in the browser, display

error messages, and the occurrence of network traffic without

any request from the user.

In this paper, an anti spyware system using design patterns

will be designed and implemented for detecting and

classifying spyware. This proposed approach can be reusable

and modifying itself for any new or unknown spyware.

This paper is organized as follows; related work and design

patterns are discussed in section 2 and section 3, respectively.

The proposed anti spyware system design and implementation

are explained in section 4 and section 5, respectively.

The conclusions and future work are discussed in section 6.

2. RELATED WORK
Spyware detection techniques are used to detect the spyware

and prevent the infection of the computer system. They can be

categorized into signature based detection, behavior based

detection, specification based detection, and data mining

based detection [3] that will be discussed in the next sections.

2.1 Signature Based Detection
Signature based detection detects spyware by comparing the

spyware signature to the database. These signatures are

created by examining the disassembled binary code of

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.2, August 2015

10

spyware. Disassembled code is analyzed and features are

extracted. These features are used to construct the signature of

a certain spyware family [2]. The main advantages of this

technique is that it can accurately detect known spyware and

using less amount of resources to detect the spyware because

it mainly focus on signature of attack. The main disadvantage

is that it is unable to detect the new spyware as there is no

available signature for this new type of spyware [6].

2.2 Behavior Based Detection
The function of behavior based detection is to analyze the

behavior of known or unknown spyware. It usually occurs in

two phases: training phase and detection phase. During

training phase the behavior of the system in the ideal state is

observed and machine learning technique is used to create a

profile of such normal behavior. The detection phase is the

comparison of the current system behavior after attack to the

normal behavior and differences are flagged as potential

attacks [7]. The main advantage of this technique is that it is

able to detect known as well as new or unknown instances of

spyware because it focuses on the behavior of system to detect

unknown attack. The main disadvantage of this technique is

that it constantly needs to update the data describing the

system behavior. It needs more resources like CPU time,

memory and disk space as well as level of false positive rate

is high [8].

2.3 Specification Based Detection
Specification based detection is derivative of behavior based

detection that tries to overcome the high false positive rate

associated with it. Monitoring programs are involved in

executions and detecting deviation of their behavior from the

specification, rather than detecting the occurrence of specific

attack patterns [9]. The main advantage of this technique is

that it can detect known as well as new or unknown instances

of spyware and level of false positive is low. The main

disadvantages of this technique are the level of false negative

rate is high, not as effective as behavior based detection in

detecting new attacks and development of detailed

specification is time consuming.

2.4 Data Mining Based Detection
Data mining has been the main focus of many spyware

researchers for detecting the new unknown spyware. They

have added data mining as a fourth proposed spyware

detection technique [3]. Data mining helps in analyzing the

data with automated statistical analysis techniques, by

identifying meaningful patterns or correlations. The results

from this analysis can be summarized into useful information

and can be used for prediction. Machine learning algorithms

are used for detecting patterns or relations in data which are

further used to develop a classifier. Data mining is capable of

detecting new or unknown spyware with high detection rate

compared to signature, behavior, and specification based

detection methods [10][11].

3. DESIGN PATTERNS
Design patterns are a general reusable solution to a commonly

occurring problem within a given context in software design.

It is a software solution for problems that arise regularly

during software design. It serves as readily applicable, time

saving strategies for software development. Design patterns

are a description or template for how to solve a problem that

can be used in many different situations. The idea of a design

pattern was developed by Christopher Alexander in his work

on reusable strategies for architecting space and structure.

Each pattern describes a problem which occurs over and over

again in our environment, and then describes the core of the

solution to that problem, in such a way that you can use this

solution a million times over, without ever doing it the same

way twice [12].

3.1 Design Patterns Categories
Design patterns are categorized into three main categories

depending on their functions; creational, structural and

behavioral patterns. Creational patterns provide instantiation

mechanisms, making it easier to create objects. Structural

patterns generally deal with relationships between entities,

making it easier for these entities to work together. Behavioral

patterns are used in communications between entities and

make it easier and more flexible for these entities to

communicate. In Table 1, the all types of design patterns

related to their categories are summarized and it discussed

with more details in [12].

Table 1: Types of design patterns

Behavioral Structural Creational

Factory

Abstract Factory

Builder

Prototype

Singleton

Adapter

Bridge

Composite

Decorator

Facade

Flyweight

Proxy

Interpreter

Template Method

Chain of

Responsibility

Command

Iterator

Mediator

Memento

Observer

State

Strategy

Visitor

3.2 Design Pattern Selections
One challenge for the current anti spyware systems is the need

of changing the structure of the programs to be able to detect

new or unknown spywares. In our proposed anti spyware

system, observer, factory, and abstract factory design patterns

are selected to be used in this system. Observer design pattern

defines a one-to-one dependency between objects so that, if

one object changes state, all its dependents are notified and

updated automatically [13]. Therefore, in the case of any

modifications in the program, these will be inheriting in the

system to be reusable.

In the factory design pattern an interface for creating an object

is provided, but it leaves a choice of the object’s concrete type

to a subclass [13]. Therefore, when a scanned file is classified

as a new spyware the system will create a new spyware type

according to its family.

Finally, abstract factory design pattern provides an interface

for creating families of related or dependent objects without

specifying their concrete classes [13]. So, when a scanned file

is classified as unknown spyware, the system will create a

new spyware family and new spyware type with this new

behavior to make the system update itself.

4. THE PROPOSED ANTI SPYWARE

SYSTEM DESIGN
In the proposed anti spyware system design, security patterns

will be combined with design patterns in an integrated anti

spyware system. Security patterns analyze the detected

signature, the behavior or the data depending on the used

methods for classifying the scanned file. Moreover the

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.2, August 2015

11

reusable advantage of the design patterns for building a new

anti spyware patterns for each spyware family. So that, in the

proposed approach, there is no need for changing the structure

of the current anti spyware programs in case of a new spyware

type is existed.

4.1 The Proposed Framework
The proposed anti spyware framework will be consists of

three layers as shown in Figure 1. First, the lowest layer is the

selected design patterns which will be suitable in the case of

anti spyware containing the observer, factory, and abstract

factory design patterns. Second, the middle layer is the

security patterns which analyze signature in the case of using

signature based detection techniques. It also analyze behavior

when using behavior/specification based detection techniques,

or data when using data mining techniques of the scanned file.

Finally, the highest layer is the new anti spyware patterns for

each family of spyware using design patterns for detecting

new or unknown spywares.

Fig 1: The proposed anti spyware framework

Figure 2 shows the proposed anti spyware block diagram that

uses the design patterns approach. It starts with the problem

description for the incoming data then choosing the

corresponding design patterns to this problem and after that

building a new design patterns system to classify the scanned

file into benign or spyware.

Fig 2: The proposed anti spyware block diagram

4.2 The Proposed System Architecture
Figure 3 shows the proposed anti spyware system architecture

based on design patterns. The classifier in this architecture

used to classify the input file after representation of the data in

the format that is predefined to the classifier before. This

architecture makes the system ready for detecting new

spyware type or new spyware family. In this section, we will

introduce the different blocks of this proposed architecture as

follows.

4.2.1 Observer Design Pattern
The observer design pattern jobs are discussed as follows.

First, if the input data file is known to the classifier then the

classifier will detect its type from the predefined spyware

types known to the system. Second, if the input data file is a

new spyware type of a predefined spyware family then the

classifier will detect this type and observer design pattern will

trigger the system to create this type under its family.

Finally, if the input data file is a new spyware type of a new

spyware family then the observer design pattern will trigger

the system to create this new family and its new behavior.

4.2.2 Factory Design Pattern
If the input data file is a new spyware type of a predefined

spyware family then the classifier will detect this type and the

factory design pattern will create this type related to its family

in the system database to be inherited in the system.

4.2.3 Abstract Factory Design Pattern
If the input data file is a new spyware type of a new spyware

family. The abstract factory design pattern will trigger the

spyware factory and the behavior factory to create the new

family of the spyware and its new behavior in the system

database to be inherited in the system.

Fig 3: The proposed anti spyware system architecture

5. THE PROPOSED ANTI SPYWARE

SYSTEM IMPLEMENTATION
In this section the system class diagram will be discussed in

section 5.1, and the implementation setup and results are

shown in section 5.2.

5.1 System Class Diagram
Figure 4-(a) shows the observer design pattern class diagram

that contains two main classes. The first class is

AntiSpywareSubject which is the interface between the

system and the outside environment. Its update will be

reflecting on the spyware or spyware behavior database. The

second class is AntispywareDatabase that can register, or

remove observers in the array list. It can also notify all of

observers or some of them that exist in the array list for

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.2, August 2015

12

updating spyware family or the behavior using ISpyware

interface.

Figure 4-(b) shows the abstract factory and factory design

patterns class diagram that starts with the two main classes,

ISpyware and Behavior classes. These two classes get their

order for creating new objects of spyware families and

behaviors from their own SpywareFactory and

BehaviorFactory. One of these recent factories is chosen to

create an object related to the AbstractFactory class order that

has from the FactroyProducer class.

5.2 Implementation Setup and Results
Our implementation runs on Intel Core i7 with 4GB of RAM

using Eclipse Java version Juno R1. Figure 5 shows the

Eclipse Java software interface with its different modules and

simulation output results. The results show some of new

spyware families and behaviors that created from the

simulation program. As shown in Figure 5, the Adware,

Adawra1, and Type1 are some of the output results of

spyware family, name, and type, respectively when a new

object is detected by the proposed simulated system.

The simulated results also show updating all spyware

behaviors (i.e., Adware, Scareware, and KeyLogger) or

updating only the behavior of KeyLogger.

(a) Observer design pattern class diagram

 (b) Abstract factory and factory design pattern class diagram

Fig 4: System class diagrams

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.2, August 2015

13

Fig 5: Simulation Output Results

6. CONCLUSTIONS AND FUTURE

WORK
In this paper we proposed anti spyware system based on

design patterns for detecting and classifying spywares. The

classification of new or unknown spyware will create a new

object according to its type so the system will update itself.

The proposed anti spyware system is reusable in which it can

modify itself in case of new spyware so that new as well as

unknown spyware will be inherited in the system to be

detected. The simulated results show updating all spyware

behaviors or updating any one of these types. In future work,

the proposed system based on design patterns can be

combined with any of the traditional spyware detection

methods.

7. REFERENCES
[1] G. Padmavathi, and S. Divya “A Survey on Various

Security Threats and Classification of Malware Attacks,

Vulnerabilities and Detection Techniques”,

The International Journal of Computer Science &

Applications (TIJCSA), Vol. 2, pp. 66-72, India, 2013.

[2] Donghwi Lee, Won Hyung Park, and Kuinam J Kim

“A Study on Analysis of Malicious Codes Similarity

Using N-Gram and Vector Space Model”, IEEE

International Conference on information and applications

(ICISA), pp. 1-4, Republic of Korea, 2011.

[3] Jyoti Landage, and Wankhade “Malware and Malware

Detection Techniques: A Survey”, International Journal

of Engineering Research & Technology (IJERT), Vol. 2,

pp. 61-68, India, 2013.

[4] Mohamad Fadli Zolkipli, and Aman Jantan

“A Framework for Malware Detection Using

Combination Technique and Signature Generation”,

IEEE International Conference on Computer Research

and Development, pp. 61-68, Malaysia, 2010.

[5] Raja Khurram Shazhad, Syed Imran Haider, and Niklas

Lavesson “Detection of Spyware by Mining Executable

Files”, IEEE International Conference on Availability,

Reliability and Security (ARES), pp. 295-302,

Sweden, 2010.

[6] Kai Huang, Yanfang Ye, and Qinshan Jiang “ISMCS: An

Intelligent Instruction Sequence based Malware

Categorization System”, IEEE International Conference

of Anti-counterfeiting, Security, and Identification in

Communication, pp. 509-501, China, 2010.

[7] Mohammad Wazid, Avita Katal, R.H. Goudar,

D.P. Singh , and Asit Tyagi “A Framework for Detection

and Prevention of Novel Keylogger Spyware Attacks”,

IEEE International Conference on Intelligent Systems

and Control (ISCO), pp. 433-438, India, 2012.

[8] Karan Sapra, Benafsh Husain, Richard Brooks, and

Melissa Smith “Circumventing Keyloggers and

Screendumps”, IEEE International Conference on

Malicious and Unwanted Software, pp. 103-105,

USA, 2013.

[9] Raihana Md Saidi, Siti Arpah Ahmad, Noorhayati

Mohamed Noor, and Rozita Yunos “Windows Registry

Analysis for Forensic Investigation”, IEEE International

Conference on Technological Advances in Electrical,

Electronics and Computer Engineering (TAEECE),

pp. 132-136, Malaysia, 2013.

[10] Raja Khurram Shahzad, Niklas Lavesson, and Henric

Johnson “Accurate Adware Detection using Opcode

Sequence Extraction”, IEEE International Conference on

Availability, Reliability and Security (ARES),

pp. 189-195, Czech Republic, 2011.

[11] Raja Khurram Shahzad and Niklas Lavesson “Detecting

scareware by mining variable length instruction

sequences”, IEEE International Conference on

Information Security South Africa (ISSA), pp. 1-8,

South Africa, 2011.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,

Design Patterns: Elements of Reusable Object-Oriented

Software, Boston, Massachusetts, Addison-Wesley

Longman Publishing Co., Inc., USA, 1995.

[13] Eric Freeman, Elisabeth Freeman, Bert Bates, and Kathy

Sierra, Head First Design Patterns, O'Reilly Publishing

Co., Inc., USA, 2008.

IJCATM : www.ijcaonline.org

