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ABSTRACT  
A unique method for image enhancement using the 

nonsubsampled Contourlet transform (NSCT) is presented 

here. Existing methods for image enhancement cannot capture 
the geometric information of images and tend to amplify 

noises when they are applied to noisy images since they 

cannot distinguish noises from weak edges. In contrast, the 

nonsubsampled Contourlet transform extracts the geometric 

information of images, which can be used to distinguish 

noises from weak edges. In this paper, we take the low pass 

subband of the \image obtained after nonsubsampled 

Contourlet decomposition. QR decomposition is applied on 

the lowest frequency subband. SVD decomposition technique 
is applied on the QR decomposed coefficients to obtain 

singular values. Therefore, changing the singular values will 

directly affect the illumination of the image; hence, the other 

information in the image will not be changed.  Experimental 

results show the pro-posed method achieves better 

enhancement results than a wavelet-based image enhancement 

method. 
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1.   INTRODUCTION 
Image enhancement is widely used in medical and biological 

imaging to improve the image quality. Traditional image 

enhancement methods such as unsharp masking split an 

image into different frequency subbands and amplify the 

high pass subbands. More recent methods are based on the 

discrete wavelet transform in a multiscale framework and 

achieve better results [1]. However, all existing methods 

decompose images in a separable fashion, and thus cannot 

use the geometric information in the trans-form domain to 

distinguish weak edges from noises. There-fore, they either 

amplify noises or introduce visible artifacts, when they are 

applied to noisy images. 

Recently do and Vetterli proposed an efficient directional 

multiresolution image representation called the con-tourlet 

transform [2]. The Contourlet transform employs Laplacian 

pyramids to achieve multiresolution decomposition. Owing 

to the geometric information, the con-tourlet transform 

achieves better results than discrete wavelet Transform in 

image analysis applications such as denoising And texture 

retrieval [3]. Due to down sampling and upsam-pling, the 

Contourlet transform is shift-variant. However, shift-

invariance is desirable in image analysis applications such as 

edge detection, contour characterization, and image 

enhancement [4]. Discrete wavelet transform is one of the 

suitable tool for contrast enhancement [5], but cannot capture 

information at edges and contours. 

In this paper, we present the nonsubsampled Contourlet 

transform (NSCT), which is a shift-invariant version of the 

Contourlet transform. The NSCT is built upon iterated non-

subsampled filter banks to obtain a shift-invariant directional 

multiresolution image representation. Based on the NSCT, 

we propose a new method for image enhancement using 

matrix factorization. The input image is first processed by 

using General Histogram Equalization (GHE) [6] to generate 

equalized image. Then, the equalized image and original 

image are transformed by NSCT into different subband 

images. Then QR Decomposition is applied to both the 

subband images. The QR decomposed coefficients are further 

factorized by SVD technique. The correction coefficients for 

the singular value matrix of both the images are calculated 

and the new LL subband is obtained. Then the new LL 

subband image is combined with other subband images by 

applying inverse transformation to generate equalized image. 

2.   CONSTRUCTION 
We briefly introduce the construction of the nonsubsam-pled 

Contourlet transform. For the filter design, we refer readers to 

[7]. The Contourlet transform employs Laplacian pyramids 

for multiscale decomposition, and directional filter banks 

(DFB) for directional decomposition. To achieve the shift-

invariance, the nonsubsampled Contourlet transform is built 

upon nonsubsampled pyramids and nonsubsampled DFB. 

2.1   Nonsubsampled Pyramids 
The nonsubsampled pyramid is completely different from the 

counterpart of the Contourlet transform, the Laplacian 

pyramid. The building block of the nonsubsampled pyra-mid 

is a two-channel nonsubsampled filter bank as shown in Fig. 

1(a). A nonsubsampled filter bank has no down-sampling or 

up sampling, and hence it is shift-invariant. The Perfect 

reconstruction condition is given as 

 
H0(z)G0(z) + H1(z)G1(z)  =  1  

 

This condition is much easier to satisfy than the perfect 

reconstruction condition for critically sampled filter banks, 

and thus allows better filte-rs to be designed.
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Fig  1:   Ideal frequency response of the building block of:   

(a) Nonsubsampled pyramid; (b) nonsubsampled DFB. 

 
The ideal frequency response of the building block of the 

nonsubsampled pyramid is given in Fig. 1(a). To achieve the 

multiscale decomposition, we construct nonsubsampled 

pyramids by iterated nonsubsampled filter banks. For the next 

level, we up sample all filters by 2 in both dimensions.  

 

Therefore, they also satisfy the perfect reconstruction condition. 

Note that filtering with the upsampled filter H (zM ) has the 

same complexity as filtering with H (z) using the `a trous' 

algorithm. The cascading of the analysis part is shown in Fig. 2. 

The equivalent filters of a k-th level cascading nonsubsampled 

pyramid are given by 

 
 
Where zj stands for [z1

j , z2
j ]. These filters achieve 

multiresolution analysis as shown in Fig. 3(a). 

 

2.2   Nonsubsampled Directional Filter Banks 
The nonsubsampled  DFB is a shift-invariant version of the 

critically sampled DFB in the Contourlet transform. The building 

block of a nonsubsampled DFB is also a two-channel 

nonsubsampled filter bank. However, the ideal frequency 

response for a nonsubsampled DFB is different, as shown Fig 3.b. 
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Fig 2. Iteration of two-channel nonsubsampled filter banks 

in the analysis part of a nonsubsampled pyramid. For 

upsampled filters, only effective passbands within dotted 

boxes are shown.  
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Fig. 3. Frequency divisions of: (a) a nonsubsampled pyra-

mid given in Fig. 2. (b) a nonsubsampled DFB given in Fig. 

5. 

 
 
2.3   Nonsubsampled Contourlet Transform 
The nonsubsampled Contourlet transform combines nonsub-

sampled pyramids and nonsubsampled DFB's as shown in Fig. 

6. Nonsubsampled pyramids provide multiscale de-composition 

and nonsubsampled DFB's provide directional 

To obtain finer directional decomposition, we iterate non-

subsampled DFB's. For the next level, we up sample all filters 

by a quincunx matrix given by 
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The frequency responses of two upsampled filters are given in Fig. 4 

and the cascading of the analysis part is shown in Fig. 
Fig. 4.  Upsampling filters by a quincunx matrix Q.  
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Fig. 5. The analysis part of an iterated nonsubsampled di-

rectional filter bank decomposition. This scheme can be 

iterated repeatedly on the lowpass subband outputs of 

nonsubsampled pyramids. 
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Fig. 6. The nonsubsampled contourlet transform: (a) Block 

diagram. First, a nonsubsampled pyramid split the input 

into a lowpass subband and a highpass subband. Then a 

nonsubsampled DFB decomposes the highpass subband 

into several directional subbands. The scheme is iterated 

re-peatedly on the lowpass subband. (b) Resulting 

frequency division, where the number of directions is 

increased with frequency. 

 
3.   MATRIX FACTORIZATION 

TECHNIQUES 
Matrix Factorization is a technique to reduce the matrix into 
some canonical form that can be easily accessed. The matrix 

decomposition is realized by the factorization of matrix. The 

factorization can be based on solving linear equation system or 

eigenvalues. There are several matrix decomposition methods 

such as SVD, QR etc. For solving linear equation system, 

singular value decomposition (SVD) technique is a good 

approach. For eigenvalue decomposition, schur factorization 

technique is appropriate. QR decomposition  is a popular 
technique for matrix factorization in linear algebra for square 

and rectangular matrix. 

 

3.1 QR DECOMPOSITION 
It factors a matrix into an orthogonal and triangular component. 
In QR decomposition, a matrix can be represented as: 
 

H = Q R.                                               

(1) 

 
Where Q is an orthogonal matrix of size PxP and R is an upper 

triangular matrix of size PxQ. It decomposes an image matrix H 

of size PxQ. 

 

3.2 SINGULAR VALUE 

DECOMPOSITION 
The singular-value-based image equalization (SVE) technique 

is based on equalizing the singular value matrix obtained by 

singular value decomposition (SVD) [8]. SVD of an image, 

which can be interpreted as a matrix, is written as follows: 

A  =  UA ΣA VA
T                                                       (1) 

where UA and VA are orthogonal square matrices known as 

hanger and aligner, respectively, and the ΣA matrix contains the 

sorted singular values on its main diagonal. The idea of using 

SVD for image equalization comes from this fact that ΣA 

contains the intensity information of a given image . The 

method uses the ratio of the largest singular value of the 

generated normalized matrix, with mean zero and variance of 

one, over a normalized image which can be calculated 

according to  

                            (2) 

where  Σ (μ=0,var=1) is the singular value matrix of the synthetic 

intensity matrix. This coefficient can be used to regenerate an 

equalized image using 

EequalizedA  = UA (ξΣA )VA
T

                                                                     (3) 

which eliminates the illumination problem. 

4.   IMAGE ENHANCEMENT 

ALGORITHM 
Existing image enhancement methods amplify noises when they 

amplify weak edges since they cannot distinguish noises from 

weak edges. In the frequency domain, both weak edges and 

noises lead to low-value coefficients. The non-subsampled 

Contourlet transform provides not only multiresolution analysis, 

but also geometric and directional representation. Since weak 

edges are geometric structures, while noises are not, we can use 

this geometric representation to distinguish them. The NSCT is 

shift-invariant such that each pixel of the transform subbands 

corresponds to that of the original image in the same location. 

Therefore, we gather the geometric information pixel by pixel 

from the NSCT coefficients.  

The general procedure is as follows. The input image is 

processed by histogram equalization and both the equalized 

image and input image undergoes Non Subsampled Contourlet 

Transform to produce Low pass subband image and Band pass 

sub band image. QR Decomposition is applied on the lowest 

subband of both the images. SVD decomposition technique is 

applied on the QR decomposed coefficients to obtain singular 

values. The correction coefficient for the singular value matrix 

is calculated by using the following equation:  

                             (1) 

Where ΣLLA the Low pass singular value matrix of the input 

image and ΣLLA is the low pass singular value matrix of the 
output of the GHE. The new low pass subband  image is  

ΣLLA    = ∂ ΣLLA 

LLA     = ULLA  ΣLLA ΣLLA                          (2)   
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Now, the LLA, LHA, HLA, and HHA subband images of the 

original image are recombined by applying INSCT to generate 

the resultant equalized image. In the following section, the 

experimental results and the comparison of NSCT, CT and 

DWT are discussed. 

5. EXPERIMENTAL RESULTS 
The results analysis has been done for image contrast 

enhancement with DWT,CT and NSCT. The Low contrast 

satellite image is given as the input and an equalized image is 

obtained. The Transforms are individually applied both on the 

equalized image as well as directly on the Low contrast satellite 

image. Then QR factorization is done. Then SVD is calculated 

for both the decomposed image and the correction coefficient is 

also calculated. A new subband image is obtained from which 

the original image is reconstructed.  

 In an attempt to estimate the quantitative performance, analysis 

is done using estimated Gaussian distribution of the enhanced 

images. In probability theory, Gaussian distribution, is a 

continuous probability distribution that is often used as a first 

approximation to describe real-valued random variables that 

tend to cluster around a single mean value. The graph of the 

associated probability density function is  “bell”-shaped, and is 

known as the Gaussian function or bell curve. The width of the 

bell shaped curve illustrates illumination of the image. The 

proposed algorithm is implemented using Matlab. Experiments 

have been performed on over 50 randomly selected images 

from various sources which confirmed the qualitative results.  

                                   
(a)                                                       (b) 

Fig 7 (a) Original Image  (b) Enhanced Image using DWT 

                      

(a)                     (b) 

Fig 8 (a) Enhanced Image using CT  (b) Enhanced Image 

using NSCT 

In order to support the qualitative conclusions on the superiority 

of the proposed method, a quantitative analysis is done using 

Gaussian Distribution. The enhanced images are modelled by 

using the calculated mean (μ) and standard deviation (σ) of the 

output images. Any pixel of an image can be considered as a 

random variable with a distribution function. According to the 

central limit theorem, the sum of a sequence of random 

variables tends to have a Gaussian distribution [9]. It is clear 

from these distributions that in the estimated Gaussian functions 

the (σ) (measure of the width of the distribution) values of 

Contourlet Transform are higher than DWT. However, the 

estimated Gaussian distribution of the Contourlet Transform 

covers a wider gray level range which is verified by calculating 

the standard deviation (σ). PSNR values are also calculated .A 

higher PSNR would normally indicate that the reconstruction is 

of higher quality. Even a 0.5db changes in PSNR would 

improve image quality visible to the eye. The Table I shows the  

PSNR and σ of the Fig 7(b) , 8(a) and 8(b) 

TABLE 1. PSNR and σ of different transforms 

Parameters Enhanced 

Image by 

DWT 

Enhanced 

Image by 

CT 

Enhanced 

Image by 

NSCT 

              σ 75.68 76.28 76.31 

PSNR 24.29 24.29 26.93 

 
6.   CONCLUSION 
We present the nonsubsampled contourlet transform con-

structed by iterated nonsubsampled filter banks. This trans - 

form provides shift-invariant directional multiresolution im-age 

representation. We propose a new algorithm for im-age 

enhancement using the nonsubsampled contourlet trans-form. 

Experimental results show that the proposed algo-rithm 

achieves better enhancement results than the undeci-mated 

wavelet transform and contourlet transform 
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