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ABSTRACT 

Without motivation, writing may be a cumbersome process. In 

this work, a methodology is proposed which will assist user 

by providing some reference information e.g. related words 

while composing an article or message. Smart systems with 

related word prediction have turned out to be extremely 

prevalent for English language but there is no such big efforts 

for Hindi language. The main goal of this dissertation work is 

to provide syntactically and semantically related words based 

on continuous feature vector representation. Continuous Bag 

of Words (CBOW) language model is used to get the feature 

vector representation of each word in training set. Cosine 

Distance and rule based strategy is used as measurement to 

find the most related word in context. In a comparative study 

we reasoned that our method excels in accuracy estimation 

than existing method. This approach will help Hindi writing in 

an effective and creative manner.   
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1. INTRODUCTION 
To improve the performance of various natural language 

applications, statistical language modelling is required to 

capture the regularities of natural language. Statistical 

language models generate a probability distribution to assign a 

probability to various linguistic units such as words, sentences 

or whole documents.  

Language modelling is critical in many NLP applications like 

machine translation, speech recognition, information retrieval, 

word sense disambiguation, POS taggers etc. Speech 

recognizers profit from a probability assigned to the next 

word in a speech sequence to be predicted. In Machine 

Translation systems, an LM is used to tune the probability 

scores of outputs by the system in order to improve for the 

actual grammaticality and smoothness of a translation in the 

target language.  

While dealing with natural languages, SLM must employ 

techniques to estimate the large number of parameter due to 

categorical nature of natural languages and the large 

vocabulary size people naturally use. One of the standard and 

successful earlier technique of language modelling is n-gram 

model [1]. Which concatenates the short overlapping 
sequences seen in training set. This model take advantage of 

word ordering and the fact that words which are temporally 

closer are statistically more dependant. So, in the 

mathematical representation, it will take the combination of 

previous n-1 words in context. 

 

For 2 grams it will calculate the probability of next word as 

follows: 

 

But in recent years, there is massive amount of text of various 

type have become available online. As the size of data gets 

large, quality of language model should be improved. 

N-gram language model cannot handle large amounts of data 

due to curse of dimensionality. Curse of Dimensionality in 

terms of language modelling can be defined as when number 

of parameters of the model increases exponentially with 

number of variables in input. Due to this issue sometimes n-

gram model will not be able to assign the probability to a 

word which has not seen in training. Assigning zero 

probability to a word should be avoided in any efficient 

language model. 

Although many smoothing techniques have been applied to n-

gram to avoid zero probability but still they are not giving 

results up to our expectation while dealing with large amounts 

of data. 

To overcome the curse of dimensionality and get better 

generalization, neural network techniques applied to language 

modelling. It has been proved that neural networks with one 

hidden layer works as approximator function [1]. Hidden 

layer in neural network represents learned non-linear 

combination of input features which works as an 

approximator. Figure 1 below shows the basic neural network 

architecture. This model simultaneously learns distributed 

representation of words as well probability function for 

predicting next word. Distributed representation captures 

syntactic and semantic features of words which helps in 

generalizing well to word sequences which are not seen in 

training set. 

Advantages over n-gram model: N-gram model do not take 

context farther than 2 or 3 words because as it increases the 

context parameters would be increased exponentially which 

further causes more complexity. But in neural networks 

distributed representation of words is learned which helps in 

reducing total number of parameters. In neural network 

number of parameters grows polynomially (Square) with the 

number of variables in input. 
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Moreover, n-gram do not take into account similarity of 

words. It does not count syntactic or semantic features of 

words. For example in sentence “The cat is running in the 

room” and “The dog is walking in the garden” Here Dog and 

Cat plays similar semantical and grammatical roles. But it 

take both of them differently. 

 

Fig 1: Basic neural network architecture (Universal 

Approximator) 

For non-English users, Hindi input method is first tool for 

interacting with a computer. Quillpad [26], the first Indic 

transliteration solution to use statistical machine learning 

method for intelligently converting user entered free-style 

phonetic input to its accurate representation in a chosen Indian 

language. After that Google Input tools for Hindi Language 

came up. But such input methods do not provide any 

intelligent suggestion for writing. Antaryami [17] is first such 

kind of tool available for Hindi language which suggest the 

next word based on context. This tool is based on n-gram 

language model developed in 2013. This applications assists 

user by giving multiple suggestions for the next word 

possible. 

The paper is organized as such that next section presents a 

review of existing neural network language models i.e. state 

of the art of the field. Details of the related work in the Hindi 

language is given in the next section. Subsequent section 

presents the proposed methodology to achieve the final 

objective. After this Results and Discussions are covered. 

Conclusion and Future work is summed up at the end. 

2. NEURAL NETWORK LANGUAGE 

MODELS 
Neural network functioning is based upon human brain. To 

learn the objects, our brain compare all active or inactive 

features of one object to others. Likewise as a language 

model, neural network learns distributed representation of 

each word by capturing all its features. In a vector space, each 

word is continuous valued vector representation corresponds 

to a point. All the word which have similar features are closer 

to each other in feature space and a sequence of words can be 

transformed into a sequence of learned feature vectors. Also, 

such functionally alike words can be replaced by each other in 

a word sequence of the same context. 

This functionality helps NN to make the predictions about the 

next word in a given sequence and also help in predicting 

OOV (Out of Vocabulary) word forms. 

In the early 90’s, neural networks are popular learning 

techniques that was capable of learning syntactical and 

semantic meaning of words automatically during training. But 

they lost their popularity due to immense computation 

required during training phase that takes significant amount of 

time. But advent of faster and parallel computer architectures, 

made them in demand again and have been further developed 

into multilayer, recurrent or deep neural network architecture. 

2.1 Feed Forward Neural Network 

Language Model 
Bengio et al. [5] in 2001 proposed a feed-forward neural 

network language model with multiple input neurons and 

hidden units to capture the distributed representation of words 

efficiently as shown in figure 2. The methodology of this 

algorithm can be summarized as follows [5]: 

 Associate distributional feature vector of each word 

in the vocabulary (a real valued vector in Rm). 

 Express the joint probability function for word 

sequences calculated using feature vectors. 

 Learn simultaneously the word feature vectors and 

the parameters of that probability function. 

The feature vector represents different aspects of the word: 

each word is associated with a point in a vector space. The 

number of features of word like connotations, POS etc. are 

much smaller than the size of the vocabulary (e.g. 17,000). 

The probability function is expressed as a product of 

conditional probabilities of the next word given the previous 

ones. 

 

Fig 2: Feed forward neural network architecture [5] 

The computational complexity of feed forward neural network 

per each training example is [16]: 

 

Where the dominating term is of H*V of output layer. To 

avoid it we may use hierarchical version of softmax layer in 

which total output units need to be evaluated reduced to log V 

[6]. 

Problems: 

 Computation is costly. 

 Training and Testing time is long. 

 Use fixed length context that needs to be specified 

ad hoc before training. 
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2.2 Recurrent Neural Network Language 

Model 
Since FNNs have fixed number of input neurons so only the 

words which are represented by input neurons are used to 

predict the next word and all words which were presented 

during previous iteration are forgotten. These previous words 

can play a significant role in learning the context and 

estimating suitable next word. 

To overcome the issue, Elman (1990) [15] proposed variant of 

FNN where extra neurons are incorporated that are connected 

to hidden layer like other input neurons. These extra neurons 

are termed as context neurons and hold the contents of one of 

layers as it existed while the previous pattern was trained. 

Training of the network would be done in same way as 

previous. 

To have the indefinite length of contexts, recurrent version of 

neural network is used. Micklov et al. [10] in 2010 proposed a 

language model based upon recurrent neural network 

approach with application to speech recognition. By using 

recurrent connections, information can cycle inside these 

networks for arbitrarily long time. Figure 3 depicts the process 

of RNNs. They have used simplest architecture of recurrent 

neural network, very easy to implement and train. The 

network consist of input layer x, hidden layer (context, 

shared) layer s, and output layer y. Input, hidden and output 

layer function are calculated as follows [10]: 

 

Where f (z) is sigmoid activation function and g (z) is softmax 

function: 

 

 

Advantage over feed forward neural network approach: 

 Need to define less parameters before training as in 

we only have to define size of hidden layer. Where 

as in feed forward neural network we have to define 

parameters for projection layer as well. 

 This network do not define size of context prior. 

Rather they encode temporal information implicitly 

for context with arbitrary length. 

The computational complexity of recurrent neural network per 

each training example is [16]: 

 

 

Fig 3: Architecture of Recurrent neural network language 

model 

2.3 Continuous Bag of Words Language 

Model 
Micklov et al. [16] in 2013 proposed a novel architecture for 

computing continuous vector representation of words as 

shown in figure 4. From the previously described model we 

have seen that most of the complexity is caused by the 

nonlinear hidden layer in the model. In this model hidden 

layer have been removed to reduce the complexity but they 

still give efficient result for large corpuses. It is alike the feed-

forward NNLM, where the non-linear hidden layer is 

abolished and the projection layer is shared for all words (not 

just the projection matrix), thus, all words get projected into 

the same position. This architecture is called a bag-of-words 

model as the order of words in the history does not influence 

the projection. Training complexity is then [16]: 

 

Fig 4: Architecture of continuous bag of words model 

(CBOW) 

2.4 Continuous Skip Gram Language 

Model 
The second log-linear architecture is identical to CBOW, but 

it tries to maximize classification of a word based on another 

word in the same sentence instead of predicting the current 

word based on the context [16]. In more precise manner, each 

current word is fed to input layer of log-linear classifier with 
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continuous projection layer, and predict words within a 

certain range (defined as parameter) before and after the 

current word as shown in figure 5. It is apparent that 

increasing the range directly impacts the quality of the 

resulting word vectors, but it also enhances the computational 

complexity. Since distance and relatedness to the current word 

is inversely proportional i.e. distant words are less related to 

the current word so less weight would be given to the distant 

words compare to close word by sampling less from those 

words in given training examples. 

The training complexity of this architecture is proportional to 

[16]: 

 

Where C is the range of context words. For example if we 

choose C = 4, for each training word a random number R in 

range < 1, C > would be selected, and then use R words from 

history and R words from the future of the current word as 

correct labels. This will require to do R * 2 word 

classifications, with the current word as input, and each of the 

R + R words as output. 

 
Fig 5: Architecture of continuous skip gram model 

Table 1 shows comparison among language models described 

above: 

Table 1. Comparison among state of the art language 

models 

 

2.5 Related Work 
Various transliteration and synonym extraction technique 

have been developed in recent years for the Hindi language. 

In 2001 and 2002, under the leadership of Pushpak 

Bhattacharya, IIT Mumbai developed Hindi WordNet [28] 

based on Princeton University’s English WordNet. Work have 

been done to get semantic information from Hindi word-net 

[8]. 

Similarly machine translation from English to Hindi language 

have been done [13]. Many transliteration techniques have 

been proposed. Quillpad [26], the first Indic transliteration 

solution to use statistical machine learning method for 

intelligently converting user entered free-style phonetic input 

to its accurate representation in a chosen Indian language is 

developed in 2006. After that Google Input tools for Hindi 

Language came up. But such input methods do not provide 

any intelligent suggestion for writing. Antaryami [17] is first 

such kind of tool available for Hindi language which suggest 

the next word based on context. This tool is based on n-gram 

language model developed in 2013. This applications assists 

user by giving multiple suggestions for the next word 

possible. 

3. PROPOSED METHODOLOGY 
The proposed methodology has been depicted in figure 6 

below: 

 

Fig 6: Proposed Methodology 

3.1 Data Collection 
First step is Data collection i.e. collecting Hindi data from 

various online resources and merge it all in one text file. Hindi 

data corpuses have been made available by CFITL, Mumbai 

[28] and Wikipedia Text Dumps available under CC-BY-SA-

3.0 [32]. Moreover, data have been collected from Hindi 

News media sites and literature sites as well. All data files are 

merged into single fie. Table 2 shows data set description. 

Table 2. Data Set Description 

 

3.2 POS Tagging 
POS tagging is the process of assigning correct part of speech 

to each word of a given input text depending on the context. 

Tagging algorithm is based upon TnT tagging methodology 

[12]. TnT is a very efficient statistical part-of-speech tagger 

that is trainable on different languages and virtually any tag 

set. The tagger learns morphological analysis and pos tagging 

at the same time. 
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3.3 Word Vector Representation 
To get the word vector, CBOW model is used. This language 

model is faster than others and also shows good performance 

in terms of perplexity and word relatedness. 

3.4 Vector Comparison 
After obtaining the distributed representation of each word in 

the vocabulary, to get the most related word in context, a 

comparison is performed between the input word and all other 

words in the vocabulary. To compare two vectors, Cosine 

distance is used as measurement. 

After calculating the distance, Ranking of words will be 

organized in Descending order. Total 100 words closest words 

will be considered for further evaluation in next step. 

3.5 Applying Rule Based Strategy 
After getting the 100 closest word vectors, we re-rank them 

according to their part of speech [14] to maximize the 

accuracy. Rule-Based strategy would be as given below in 

table 3: 

Table 3. Rule based Strategy 

 

4. RESULT EVALUATION 
It has been obvious that prediction for words with initial 

positions would not be as accurate as it should be due to lack 

of context. But CBOW model has advantage that in absence 

of context it predict the most related word of original word. 

For example if we type the word "Pooja", it will give all the 

diverse related word of it. Table 4 below shows result. 

Table 4. Predicted words for the word “Pooja” 

 

We have a separate test file to check the outcome. This test 

file has total 100 syntactic and semantic questions formulated. 

In each question we have given 4 related words of each 

sample word. Accuracy is measured by harnessing linguistic 

regularities of vectors generated by NN models [18]. Word 

vectors calculated by those models capture meaningful 

semantic and syntactic regularities in a very simple way. For 

example to answer the question we first have to find out the 

embedding vector of 3 words for each question in test set. 

Suppose we have xa, xb and xc the corresponding feature 

vector of a question. Then to find out the fourth word d we 

first calculate y = xb - xa +xc. y is the embedding vector of the 

word we expect to be the required answer. Of course, no word 

might exist at that exact position, so search for the word 

whose embedding vector has the greatest cosine similarity to 

y and match it to the fourth word d. If they match output it. 

 

We compare our results with Antaryami [17] which is based 

on n-gram model. We can see from results in table 5 that this 

work stands out in giving related word because of well 

continuous feature vectors calculated by CBOW model. 

Table 5. Comparative Study 

 

 

Fig 7: Comparison of both methods in terms of curse of 

dimensionality with context size 3. As the vocabulary size 

increases no. of parameters increases exponentially in 3-

gram whereas polynomially (square) in CBOW. 

5. CONCLUSION AND FUTURE WORK  
In this paper a methodology is proposed with objective of 

suggesting related word based on previous context words in 

real time while writing in the Hindi Language. We are using 

CBOW architecture to get the word vector representation of 

Hindi word sequences. This is a novel approach based upon 

neural networks. 

By going through the state of the art SLM that explore the use 

of NN's to statistical language model, we concluded that NN-

LMs are very capable and timely contribution to learn 

generalization over a highly discrete space of natural language 

word sequences. When comparing to base n-gram model, they 

show huge reduction in perplexity and do not suffer from 

curse of dimensionality. Their ability to embed and cluster 

functionally and semantically similar words make them more 

useful.  

In a comparative study, we observed that it is possible to train 

high quality word vectors using very simple architecture from 

a very large data set. CBOW has simple architecture 

compared to others (Feed forward and Recurrent NN-LMs) 

but exhibit better syntactic and semantic accuracy. 

High quality word vectors can become a prominent building 

block for many NLP applications like automatic extension of 

facts from the knowledge bases and verifying correctness of 

existing facts, sentiment analysis, paraphrase detection and 

machine learning. 

In order to make it more useful, we may opt for user 

modelling in which feedback from users are fed to the model 

in future. We can make our system better by adding it into 

crowd sourcing system and monitor the performance and 

usefulness of it to the user’s writing. Furthermore, we can add 

a function which is based on query log of the search engine to 
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give more valuable suggestion to the users based on their 

history work. Moreover, although CBOW gives better result 

in short time but it suffers from proximity issues. Order 

information of context words doesn't matter. The ignorance of 

proximity causes a poorly positioned vector in feature space. 

Besides proximity, high quality word embedding also relies 

on linguistics. A single word may be belong to different 

multiple lexical categories. For example some words can be 

either a noun or verb. It would be hard to capture the syntactic 

regularities of such words in a single vector because the 

vector is required to be close to a number of nouns and verbs 

in the vector space. Such ambiguity must be addressed in 

representation learning in future. 
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