
International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.6, August 2015

29

An Approach for Predicting Related Word for

the Hindi Language

Monika Sharma

Department of Computer
Science & Engineering

Malaviya National Institute of
Technology, Jaipur

Dinesh Gopalani

Department of Computer
Science & Engineering

Malaviya National Institute of
Technology, Jaipur

Meenakshi Tripathi

Department of Computer
Science & Engineering

Malaviya National Institute of
Technology, Jaipur

ABSTRACT

Without motivation, writing may be a cumbersome process. In

this work, a methodology is proposed which will assist user

by providing some reference information e.g. related words

while composing an article or message. Smart systems with

related word prediction have turned out to be extremely

prevalent for English language but there is no such big efforts

for Hindi language. The main goal of this dissertation work is

to provide syntactically and semantically related words based

on continuous feature vector representation. Continuous Bag

of Words (CBOW) language model is used to get the feature

vector representation of each word in training set. Cosine

Distance and rule based strategy is used as measurement to

find the most related word in context. In a comparative study

we reasoned that our method excels in accuracy estimation

than existing method. This approach will help Hindi writing in

an effective and creative manner.

General Terms

Natural Language Processing, Neural Network.

Keywords

Language Modelling, Curse of Dimensionality, Distributed

Representation, CBOW, POS tagging.

1. INTRODUCTION
To improve the performance of various natural language

applications, statistical language modelling is required to

capture the regularities of natural language. Statistical

language models generate a probability distribution to assign a

probability to various linguistic units such as words, sentences

or whole documents.

Language modelling is critical in many NLP applications like

machine translation, speech recognition, information retrieval,

word sense disambiguation, POS taggers etc. Speech

recognizers profit from a probability assigned to the next

word in a speech sequence to be predicted. In Machine

Translation systems, an LM is used to tune the probability

scores of outputs by the system in order to improve for the

actual grammaticality and smoothness of a translation in the

target language.

While dealing with natural languages, SLM must employ

techniques to estimate the large number of parameter due to

categorical nature of natural languages and the large

vocabulary size people naturally use. One of the standard and

successful earlier technique of language modelling is n-gram

model [1]. Which concatenates the short overlapping
sequences seen in training set. This model take advantage of

word ordering and the fact that words which are temporally

closer are statistically more dependant. So, in the

mathematical representation, it will take the combination of

previous n-1 words in context.

For 2 grams it will calculate the probability of next word as

follows:

But in recent years, there is massive amount of text of various

type have become available online. As the size of data gets

large, quality of language model should be improved.

N-gram language model cannot handle large amounts of data

due to curse of dimensionality. Curse of Dimensionality in

terms of language modelling can be defined as when number

of parameters of the model increases exponentially with

number of variables in input. Due to this issue sometimes n-

gram model will not be able to assign the probability to a

word which has not seen in training. Assigning zero

probability to a word should be avoided in any efficient

language model.

Although many smoothing techniques have been applied to n-

gram to avoid zero probability but still they are not giving

results up to our expectation while dealing with large amounts

of data.

To overcome the curse of dimensionality and get better

generalization, neural network techniques applied to language

modelling. It has been proved that neural networks with one

hidden layer works as approximator function [1]. Hidden

layer in neural network represents learned non-linear

combination of input features which works as an

approximator. Figure 1 below shows the basic neural network

architecture. This model simultaneously learns distributed

representation of words as well probability function for

predicting next word. Distributed representation captures

syntactic and semantic features of words which helps in

generalizing well to word sequences which are not seen in

training set.

Advantages over n-gram model: N-gram model do not take

context farther than 2 or 3 words because as it increases the

context parameters would be increased exponentially which

further causes more complexity. But in neural networks

distributed representation of words is learned which helps in

reducing total number of parameters. In neural network

number of parameters grows polynomially (Square) with the

number of variables in input.

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.6, August 2015

30

Moreover, n-gram do not take into account similarity of

words. It does not count syntactic or semantic features of

words. For example in sentence “The cat is running in the

room” and “The dog is walking in the garden” Here Dog and

Cat plays similar semantical and grammatical roles. But it

take both of them differently.

Fig 1: Basic neural network architecture (Universal

Approximator)

For non-English users, Hindi input method is first tool for

interacting with a computer. Quillpad [26], the first Indic

transliteration solution to use statistical machine learning

method for intelligently converting user entered free-style

phonetic input to its accurate representation in a chosen Indian

language. After that Google Input tools for Hindi Language

came up. But such input methods do not provide any

intelligent suggestion for writing. Antaryami [17] is first such

kind of tool available for Hindi language which suggest the

next word based on context. This tool is based on n-gram

language model developed in 2013. This applications assists

user by giving multiple suggestions for the next word

possible.

The paper is organized as such that next section presents a

review of existing neural network language models i.e. state

of the art of the field. Details of the related work in the Hindi

language is given in the next section. Subsequent section

presents the proposed methodology to achieve the final

objective. After this Results and Discussions are covered.

Conclusion and Future work is summed up at the end.

2. NEURAL NETWORK LANGUAGE

MODELS
Neural network functioning is based upon human brain. To

learn the objects, our brain compare all active or inactive

features of one object to others. Likewise as a language

model, neural network learns distributed representation of

each word by capturing all its features. In a vector space, each

word is continuous valued vector representation corresponds

to a point. All the word which have similar features are closer

to each other in feature space and a sequence of words can be

transformed into a sequence of learned feature vectors. Also,

such functionally alike words can be replaced by each other in

a word sequence of the same context.

This functionality helps NN to make the predictions about the

next word in a given sequence and also help in predicting

OOV (Out of Vocabulary) word forms.

In the early 90’s, neural networks are popular learning

techniques that was capable of learning syntactical and

semantic meaning of words automatically during training. But

they lost their popularity due to immense computation

required during training phase that takes significant amount of

time. But advent of faster and parallel computer architectures,

made them in demand again and have been further developed

into multilayer, recurrent or deep neural network architecture.

2.1 Feed Forward Neural Network

Language Model
Bengio et al. [5] in 2001 proposed a feed-forward neural

network language model with multiple input neurons and

hidden units to capture the distributed representation of words

efficiently as shown in figure 2. The methodology of this

algorithm can be summarized as follows [5]:

 Associate distributional feature vector of each word

in the vocabulary (a real valued vector in Rm).

 Express the joint probability function for word

sequences calculated using feature vectors.

 Learn simultaneously the word feature vectors and

the parameters of that probability function.

The feature vector represents different aspects of the word:

each word is associated with a point in a vector space. The

number of features of word like connotations, POS etc. are

much smaller than the size of the vocabulary (e.g. 17,000).

The probability function is expressed as a product of

conditional probabilities of the next word given the previous

ones.

Fig 2: Feed forward neural network architecture [5]

The computational complexity of feed forward neural network

per each training example is [16]:

Where the dominating term is of H*V of output layer. To

avoid it we may use hierarchical version of softmax layer in

which total output units need to be evaluated reduced to log V

[6].

Problems:

 Computation is costly.

 Training and Testing time is long.

 Use fixed length context that needs to be specified

ad hoc before training.

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.6, August 2015

31

2.2 Recurrent Neural Network Language

Model
Since FNNs have fixed number of input neurons so only the

words which are represented by input neurons are used to

predict the next word and all words which were presented

during previous iteration are forgotten. These previous words

can play a significant role in learning the context and

estimating suitable next word.

To overcome the issue, Elman (1990) [15] proposed variant of

FNN where extra neurons are incorporated that are connected

to hidden layer like other input neurons. These extra neurons

are termed as context neurons and hold the contents of one of

layers as it existed while the previous pattern was trained.

Training of the network would be done in same way as

previous.

To have the indefinite length of contexts, recurrent version of

neural network is used. Micklov et al. [10] in 2010 proposed a

language model based upon recurrent neural network

approach with application to speech recognition. By using

recurrent connections, information can cycle inside these

networks for arbitrarily long time. Figure 3 depicts the process

of RNNs. They have used simplest architecture of recurrent

neural network, very easy to implement and train. The

network consist of input layer x, hidden layer (context,

shared) layer s, and output layer y. Input, hidden and output

layer function are calculated as follows [10]:

Where f (z) is sigmoid activation function and g (z) is softmax

function:

Advantage over feed forward neural network approach:

 Need to define less parameters before training as in

we only have to define size of hidden layer. Where

as in feed forward neural network we have to define

parameters for projection layer as well.

 This network do not define size of context prior.

Rather they encode temporal information implicitly

for context with arbitrary length.

The computational complexity of recurrent neural network per

each training example is [16]:

Fig 3: Architecture of Recurrent neural network language

model

2.3 Continuous Bag of Words Language

Model
Micklov et al. [16] in 2013 proposed a novel architecture for

computing continuous vector representation of words as

shown in figure 4. From the previously described model we

have seen that most of the complexity is caused by the

nonlinear hidden layer in the model. In this model hidden

layer have been removed to reduce the complexity but they

still give efficient result for large corpuses. It is alike the feed-

forward NNLM, where the non-linear hidden layer is

abolished and the projection layer is shared for all words (not

just the projection matrix), thus, all words get projected into

the same position. This architecture is called a bag-of-words

model as the order of words in the history does not influence

the projection. Training complexity is then [16]:

Fig 4: Architecture of continuous bag of words model

(CBOW)

2.4 Continuous Skip Gram Language

Model
The second log-linear architecture is identical to CBOW, but

it tries to maximize classification of a word based on another

word in the same sentence instead of predicting the current

word based on the context [16]. In more precise manner, each

current word is fed to input layer of log-linear classifier with

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.6, August 2015

32

continuous projection layer, and predict words within a

certain range (defined as parameter) before and after the

current word as shown in figure 5. It is apparent that

increasing the range directly impacts the quality of the

resulting word vectors, but it also enhances the computational

complexity. Since distance and relatedness to the current word

is inversely proportional i.e. distant words are less related to

the current word so less weight would be given to the distant

words compare to close word by sampling less from those

words in given training examples.

The training complexity of this architecture is proportional to

[16]:

Where C is the range of context words. For example if we

choose C = 4, for each training word a random number R in

range < 1, C > would be selected, and then use R words from

history and R words from the future of the current word as

correct labels. This will require to do R * 2 word

classifications, with the current word as input, and each of the

R + R words as output.

Fig 5: Architecture of continuous skip gram model

Table 1 shows comparison among language models described

above:

Table 1. Comparison among state of the art language

models

2.5 Related Work
Various transliteration and synonym extraction technique

have been developed in recent years for the Hindi language.

In 2001 and 2002, under the leadership of Pushpak

Bhattacharya, IIT Mumbai developed Hindi WordNet [28]

based on Princeton University’s English WordNet. Work have

been done to get semantic information from Hindi word-net

[8].

Similarly machine translation from English to Hindi language

have been done [13]. Many transliteration techniques have

been proposed. Quillpad [26], the first Indic transliteration

solution to use statistical machine learning method for

intelligently converting user entered free-style phonetic input

to its accurate representation in a chosen Indian language is

developed in 2006. After that Google Input tools for Hindi

Language came up. But such input methods do not provide

any intelligent suggestion for writing. Antaryami [17] is first

such kind of tool available for Hindi language which suggest

the next word based on context. This tool is based on n-gram

language model developed in 2013. This applications assists

user by giving multiple suggestions for the next word

possible.

3. PROPOSED METHODOLOGY
The proposed methodology has been depicted in figure 6

below:

Fig 6: Proposed Methodology

3.1 Data Collection
First step is Data collection i.e. collecting Hindi data from

various online resources and merge it all in one text file. Hindi

data corpuses have been made available by CFITL, Mumbai

[28] and Wikipedia Text Dumps available under CC-BY-SA-

3.0 [32]. Moreover, data have been collected from Hindi

News media sites and literature sites as well. All data files are

merged into single fie. Table 2 shows data set description.

Table 2. Data Set Description

3.2 POS Tagging
POS tagging is the process of assigning correct part of speech

to each word of a given input text depending on the context.

Tagging algorithm is based upon TnT tagging methodology

[12]. TnT is a very efficient statistical part-of-speech tagger

that is trainable on different languages and virtually any tag

set. The tagger learns morphological analysis and pos tagging

at the same time.

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.6, August 2015

33

3.3 Word Vector Representation
To get the word vector, CBOW model is used. This language

model is faster than others and also shows good performance

in terms of perplexity and word relatedness.

3.4 Vector Comparison
After obtaining the distributed representation of each word in

the vocabulary, to get the most related word in context, a

comparison is performed between the input word and all other

words in the vocabulary. To compare two vectors, Cosine

distance is used as measurement.

After calculating the distance, Ranking of words will be

organized in Descending order. Total 100 words closest words

will be considered for further evaluation in next step.

3.5 Applying Rule Based Strategy
After getting the 100 closest word vectors, we re-rank them

according to their part of speech [14] to maximize the

accuracy. Rule-Based strategy would be as given below in

table 3:

Table 3. Rule based Strategy

4. RESULT EVALUATION
It has been obvious that prediction for words with initial

positions would not be as accurate as it should be due to lack

of context. But CBOW model has advantage that in absence

of context it predict the most related word of original word.

For example if we type the word "Pooja", it will give all the

diverse related word of it. Table 4 below shows result.

Table 4. Predicted words for the word “Pooja”

We have a separate test file to check the outcome. This test

file has total 100 syntactic and semantic questions formulated.

In each question we have given 4 related words of each

sample word. Accuracy is measured by harnessing linguistic

regularities of vectors generated by NN models [18]. Word

vectors calculated by those models capture meaningful

semantic and syntactic regularities in a very simple way. For

example to answer the question we first have to find out the

embedding vector of 3 words for each question in test set.

Suppose we have xa, xb and xc the corresponding feature

vector of a question. Then to find out the fourth word d we

first calculate y = xb - xa +xc. y is the embedding vector of the

word we expect to be the required answer. Of course, no word

might exist at that exact position, so search for the word

whose embedding vector has the greatest cosine similarity to

y and match it to the fourth word d. If they match output it.

We compare our results with Antaryami [17] which is based

on n-gram model. We can see from results in table 5 that this

work stands out in giving related word because of well

continuous feature vectors calculated by CBOW model.

Table 5. Comparative Study

Fig 7: Comparison of both methods in terms of curse of

dimensionality with context size 3. As the vocabulary size

increases no. of parameters increases exponentially in 3-

gram whereas polynomially (square) in CBOW.

5. CONCLUSION AND FUTURE WORK
In this paper a methodology is proposed with objective of

suggesting related word based on previous context words in

real time while writing in the Hindi Language. We are using

CBOW architecture to get the word vector representation of

Hindi word sequences. This is a novel approach based upon

neural networks.

By going through the state of the art SLM that explore the use

of NN's to statistical language model, we concluded that NN-

LMs are very capable and timely contribution to learn

generalization over a highly discrete space of natural language

word sequences. When comparing to base n-gram model, they

show huge reduction in perplexity and do not suffer from

curse of dimensionality. Their ability to embed and cluster

functionally and semantically similar words make them more

useful.

In a comparative study, we observed that it is possible to train

high quality word vectors using very simple architecture from

a very large data set. CBOW has simple architecture

compared to others (Feed forward and Recurrent NN-LMs)

but exhibit better syntactic and semantic accuracy.

High quality word vectors can become a prominent building

block for many NLP applications like automatic extension of

facts from the knowledge bases and verifying correctness of

existing facts, sentiment analysis, paraphrase detection and

machine learning.

In order to make it more useful, we may opt for user

modelling in which feedback from users are fed to the model

in future. We can make our system better by adding it into

crowd sourcing system and monitor the performance and

usefulness of it to the user’s writing. Furthermore, we can add

a function which is based on query log of the search engine to

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.6, August 2015

34

give more valuable suggestion to the users based on their

history work. Moreover, although CBOW gives better result

in short time but it suffers from proximity issues. Order

information of context words doesn't matter. The ignorance of

proximity causes a poorly positioned vector in feature space.

Besides proximity, high quality word embedding also relies

on linguistics. A single word may be belong to different

multiple lexical categories. For example some words can be

either a noun or verb. It would be hard to capture the syntactic

regularities of such words in a single vector because the

vector is required to be close to a number of nouns and verbs

in the vector space. Such ambiguity must be addressed in

representation learning in future.

6. ACKNOWLEDGMENTS
We would like to thanks all those who helped us in reaching

our desired results directly or indirectly.

7. REFERENCES
[1] S. M. Katz. 1987 Estimation of probabilities from sparse

data for the language model component of a speech

recognizer. IEEE Transactions on Acoustics, Speech and

Signal Processing, pp. 400–401.

[2] S. C. Douglas. 1998. Evaluation metrics for language

models.

[3] S. Bengio and Y. Bengio. 2000. Taking on the curse of

dimensionality in joint distributions using neural

networks. Trans. Neur. Netw., vol. 11, no. 3, pp. 550–

557.

[4] Y. Bengio. 2002. New distributed probabilistic language

models. No. 1215.

[5] Bengio, Yoshua, Ducharme, R´ejean, P. Vincent, Janvin,

and Christian, “A neural probabilistic language model,”

J. Mach. Learn. Res., vol. 3, pp. 1137–1155, mar 2003.

[6] F. Morin and Y. Bengio, “Hierarchical probabilistic

neural network language model,” pp. 246–252, 2005.

[7] L. van der Plas and J. Tiedemann, “Finding synonyms

using automatic word alignment and measures of

distributional similarity,” pp. 866–873, 2006.

[8] R. Nadig, J. Ramanand, and P. Bhattacharyya,

“Automatic evaluation of wordnet synonyms and

hypernyms,” Proceedings of ICON-2008: 6th

International Conference on Natural Language

Processing., pp. 8–31, 2008.

[9] R. M. K. Sinha, “A journey from indian scripts

processing to indian language processing,” IEEE Annals

of the History of Computing, vol. 31, no. 1, pp. 8–31,

2009.

[10] T. Mikolov, M. Karafi´at, L. Burget, J. Cernock´y, and S.

Khudanpur, “Recurrent neural network based language

model,” pp. 1045–1048, 2010.

[11] J. Turian, D. D. Et, R. O. (diro, U. D. Montral, L.

Ratinov, and Y. Bengio, “Word representations: A

simple and general method for semisupervised learning,”

pp. 384-394, 2010.

[12] S. Reddy and S. Sharoff, “Cross language pos taggers

(and other tools) for indian languages: An experiment

with kannada using telugu resources,” November 2011.

[13] E. Arisoy, T. N. Sainath, B. Kingsbury, and B.

Ramabhadran, “Deep neural network language models,”

pp. 20–28, June 2012.

[14] N. Garg, V. Goyal, and S. Preet, “Rule based hindi part

of speech tagger,” COLING (Demos), no. 163–174,

2012.

[15] N. Pappas and T. Meyer, “A survey on language

modelling using neural networks,” no. Idiap-RR-32-

2012, 2012.

[16] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient

estimation of word representations in vector

space,”CoRR, vol. abs/1301.3781, Oct 2013.

[17] A. Das., “Antarym: The smart keyboard for indian

languages,”In the Workshop on Techniques on Basic

Tool Creation and Its Applications (TBTCIA 2013),

ICON, no.1215, 2013.

[18] T. Mikolov, W. tau Yih, and G. Zweig, “Linguistic

regularities in continuous space word representations,”

Proceedings of the 2013 Conference of the North

American Chapter of the Association for Computational

Linguistics: Human Language Technologies (NAACL-

HLT-2013), 2013.

[19] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J.

Dean, “Distributed representations of words and phrases

and their compositionality,” pp. 3111–3119, 2013.

[20] Q. V. Le and T. Mikolov, “Distributed representations of

sentences and documents,” pp. 1188–1196, 2014.

[21] S. Sachdeva and B. Kastore, “Document clustering:

Similarity measures,” Project Report, IIT Kanpur, 2014.

[22] L. Qiu, Y. Cao, Z. Nie, Y. Yu, and Y. Rui, “Learning

word representation considering proximity and

ambiguity,” AAAI Conference on Artificial Intelligence.,

June 2014.

[23] W. D. Mulder, S. Bethard, and M.-F. Moens, “A survey

on the application of recurrent neural networks to

statistical language modeling,” Computer Speech

Language, vol. 30, no. 1, pp. 61-98, 2015.

[24] D. Guthrie, B. Allison, W. Liu, L. Guthrie, and Y. Wilks,

“A closer look at skip-gram modelling.”

[25] Polyglot - Rami Al-Rfou - Google Sites

“https://sites.google.com/site/rmyeid/projects/polyglottoc

download-wikipedia-text-dumps.”

[26] Quillpad: http://www.quillpad.in/index.html.

[27] Fleksy Keyboard: http://fleksy.com/.

[28] Hindi WordNet (A Lexical Database for Hindi):

http://www.cfilt.iitb.ac.in/wordnet/webhwn/.

[29] Universal approximation theorem:

https://en.wikipedia.org/wiki/universalapproximationtheo

rem.

[30] Neural net language models:

http://www.scholarpedia.org/article/neural net language

models.

[31] SwiftKey: http://swiftkey.com/en/.

[32] Polyglot - Rami Al-Rfou - Google Sites

“https://sites.google.com/site/rmyeid/projects/polyglottoc

download-wikipedia-text-dumps.”

IJCATM : www.ijcaonline.org

