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ABSTRACT
In this paper, we consider the problem of identification of fifth-
order Wiener and Hammerstein nonlinear communication channels
using the estimation of an associated Volterra kernel. We exploit
the special form of the fifth-order associated Volterra kernel for
deriving two algorithms that allow to estimate the parameters of
the linear part of these channels. In the case of a Wiener channel,
the associated Volterra kernel is a tensor satisfying a rank-one PA-
RAFAC decomposition whose the parameters can be estimated by
means of an alternating least squares (ALS) algorithm. In the case
of a Hammerstein channel, its associated Volterra kernel is a dia-
gonal tensor, which leads to a closed-form solution for estimating
the parameters of the linear block. The coefficients of the nonlinear
block modeled as a fifth degree polynomial are then estimated by
means of the standard non recursive least squares (LS) algorithm.
The performance of the proposed identification methods is illustra-
ted by means of Monte Carlo simulation results.
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composition, Channel estimation, ALS algorithm.

1. INTRODUCTION
Block-structured nonlinear (NL) models are very used for mode-
ling nonlinear dynamical systems [9]. These models are generally
constituted by a cascade of time-invariant linear dynamic blocks
and nonlinear static blocks approximated by polynomials of finite
degree. Wiener and Hammerstein models are two well-known cases
of such block-structured NL models. A Wiener model consists of a
finite impulse response (FIR) linear subsystem followed by a sta-
tic nonlinear subsystem. A Hammerstein model is the reverse of a
Wiener model, i.e., a static nonlinear block followed by a FIR li-
near block. These models play an important role in various fields of
application including physiological and biological systems [13, 15]
and digital communication systems which utilize high-power am-
plifiers as used in satellites or base stations [8, 1].
Several methods have been proposed for identifying Wiener
and Hammerstein models. Recursive algorithms are proposed in

[14, 19]. Iterative algorithms have also been developed for Wiener
systems [21]. Some works consider subspace-based algorithms for
the identification of the linear and nonlinear parts of Hammerstein
[16] and Wiener systems [4].

In this paper, we propose two methods for identifying fifth-order
Wiener and Hammerstein systems. These methods estimate
separately and sequentially the linear dynamic block and the
nonlinear static block under the form of a fifth degree polynomial.
For estimating the linear subsystem, we exploit the special form
of the fifth-order associated Volterra kernel. Volterra kernels can
be viewed as tensors [6], and they can be estimated using i.i.d.
inputs [12]. In the case of a Wiener system, the associated Volterra
kernel is a tensor satisfying a rank-one PARAFAC decomposition
whose the parameters can be estimated by means of an alternating
least squares (ALS) algorithm [10]. In the case of a Hammerstein
system, its associated Volterra kernel is a diagonal tensor, which
leads to a closed-form solution for estimating its parameters.
The coefficients of the nonlinear block modeled as a fifth degree
polynomial are then estimated by means of the standard non
recursive least squares (LS) algorithm. The proposed estimation
methods generalize the results of [5, 7] which use the third-order
associated Volterra kernel instead of the fifth-order one.

The rest of this paper is organized as follows. Section II describes
the nonlinear Wiener and Hammerstein models and recalls the
expression of associated Volterra kernels. In Section III, we present
tensor-based approaches for identifying Wiener and Hammerstein
systems. The proposed identification methods are illustrated by
means of some Monte Carlo simulation results in Section IV,
before concluding the paper in Section V.

Notations : Scalars, vectors, matrices and hight-order tensors are
written as lower-case (a, b, · · · ), bold lower-case (a,b, · · · ), bold
upper-case (A,B, · · · ) and blackboard (A,B, · · · ) letters, respec-
tively. AT , AH , A∗ A+ denote transpose, transconjugate (Her-
mitian transpose), complex conjugate, and Moore-Penrose pseudo-
inverse of A, respectively. The vector Ai. (resp. A.j) represent the
ith row (resp. jth column) of A. The scalars ai, ai,j and ai1,··· ,iN
denote the ith element of a, the (i, j)th element of A and the
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Fig. 1. Wiener model.

Fig. 2. Hammerstein model.

(i1, · · · , iN )th element of A, respectively. ⊗ denotes the Krone-
cker product.

2. WIENER AND HAMMERSTEIN MODELS AND
THEIR ASSOCIATED VOLTERRA KERNELS

Let us consider single input single output (SISO) nonlinear commu-
nication channels of Wiener and Hammerstein types depicted in Fi-
gures 1 and 2, respectively. We denote by un, yn, vn and xn, the in-
put, the output, and intermediate signals, respectively. An additive
noise signal bn is present at the output of the system : sn = yn+bn.
These models are composed of a linear filter with impulse response
l(.) and g(.), of memory M , and a memoryless nonlinear subsys-
tem C(.) that represents a high power amplifier (HPA). It has been
shown that the equivalent baseband representation of the nonlinear
part contains only odd-order terms [20, 17]. The output of the Wie-
ner model is described by means of the following equations :

yn = C(vn) =

P∑
p=0

c2p+1 [vn]p+1 [v∗n]p (1)

= vn

P∑
p=0

c2p+1 |vn|2p , (2)

where vn =
∑M−1

i=0 liun−i. The input-output relationship, in base-
band, can be rewritten as the following equivalent Volterra model
[11] :

yn =

P∑
p=0

M−1∑
i1,··· ,i2p+1=0

h2p+1(i1, · · · , i2p+1) (3)

×
p+1∏
k=1

un−ik

2p+1∏
k=p+2

u∗n−ik (4)

where h2p+1(i1, · · · , i2p+1) denotes the (2p+ 1)th order Volterra
kernel given by :

h2p+1(i1, · · · , i2p+1) = c2p+1

p+1∏
k=1

lik

2p+1∏
k=p+2

l∗ik (5)

For a Hammerstein model, the output signal is given by :

yn=

M−1∑
i=0

gixn−i =

M−1∑
i=0

giC(un−i) (6)

=

M−1∑
i=0

gi

P∑
p=0

c2p+1un−i |un−i|2p (7)

=

P∑
p=0

c2p+1

M−1∑
i=0

giun−i |un−i|2p , (8)

The (2p+ 1)th order Volterra kernel associated with the Hammer-
stein model is given by :

h2p+1(i1, · · · , i2p+1) = c2p+1gi

2p+1∏
k=1

δik,i (9)

where δik,i is the Kronecker delta. So, we can conclude that the
Volterra kernel associated with the Wiener model is a tensor admi-
ting a rank-one PARAFAC decomposition, while it is diagonal for
the Hammerstein model.

3. TENSOR-BASED METHODS FOR WIENER AND
HAMMERSTEIN SYSTEMS IDENTIFICATION

In this section, we present two methods for identifying Wiener and
Hammerstein models. These methods are composed of three basic
steps :
(1) Estimate the fifth-order Volterra kernel associated with the sys-

tem to be identified using input-output measurements obtained
with i.i.d. inputs [12].

(2) Estimate the parameters of the linear subsystem using the esti-
mated Volterra kernel in step (1).

(3) Estimate the parameters of the nonlinear subsystem using the
non recursive LS algorithm.

3.1 Estimation of Volterra kernels associated with
Wiener and Hammerstein models

In this paper, the fifth-order Volterra kernel associated with the
fifth-order Wiener and Hammerstein models is estimated by means
of a closed-form expression as described in [12]. This closed-form
expression has been derived under the following assumptions :
– The input signal is real-valued, zero-mean, i.i.d. with a symme-

trical probability distribution function.
– The input/output signals are ergodic and stationary at least up to

the sixth-order.
– The additive noise is zero-mean and independent of the input

signal.

3.2 Tensor-based approaches for Wiener model
identification

3.2.1 Estimation of the linear subsystem. From Eq. (5), the fifth-
order Volterra kernel is given by :

h5(i1, i2, i3, i4, i5) = c5li1 li2 li3 l
∗
i4
l∗i5 . (10)

It can be seen as a tensor H5 ∈ CM×M×M×M×M satisfying a rank-
one PARAFAC decomposition. Define the vector of impulse res-
ponse coefficients of the linear subsystem l = [l0 · · · lM−1]T , with
l0 = 1, a standard constraint to guarantee model uniqueness. Now,

2



International Journal of Computer Applications (0975 - 8887)
Volume 123 - No.7, August 2015

Table 1. Single-step ALS algorithm
Form the unfolded matrix H1 of the estimated fifth-order Volterra ker-
nel associated with the Wiener system
(1) k = 0, initialize l̂0 with random values,

(2) k = k + 1,

(3) Compute l̂k =
[
ĝ+
k−1H1

]T
, with ĝk−1 = l̂k−1 ⊗ l̂k−1 ⊗

l̂∗k−1 ⊗ l̂∗k−1,

(4) Return to step (2) until a stop criterion is reached,

(5) Normalize l̂ by dividing its components by the first entry l̂k(1).

define the vector factors associated with this PARAFAC decompo-
sition as :

a = b = c = l, d = l∗, e = c5l
∗ (11)

The mode-1 matrix unfolding of H5, denoted H1 ∈ CM
4×M is

given by :

H1 = (b⊗ c⊗ d⊗ e)aT = c5 (l⊗ l⊗ l∗ ⊗ l∗) lT . (12)

From this equation, we can build an iterative LS algorithm which
computes an updated estimate l̂k at iteration k from the estimated
value l̂k−1 calculated at iteration k − 1, by means of the following
equation

l̂k =

[(̂
lk−1 ⊗ l̂k−1 ⊗ l̂∗k−1 ⊗ l̂∗k−1

)+
H1

]T
(13)

The corresponding iterative LS algorithm for estimating the linear
block of a Wiener system is summarized in Table 1.

3.2.2 Estimation of the nonlinear part. Define the following fil-
tered input sequence :

ū(2p+1)
n =

M−1∑
i1,··· ,i2p+1=0

p+1∏
k=1

l̂ikun−ik

2p+1∏
k=p+2

l̂∗iku
∗
n−ik (14)

where l̂ik is the estimated value of lik obtained at convergence
of the Algorithm in Table 1. Then, the output signal reconstructed
using the estimated linear block can be written as :

ŷn=ūT
nc (15)

where c = (c1 · · · c2P+1)T and ūn = (ū
(1)
n · · · ū(2P+1)

n )T . By
concatenating the output measurements for n = 1, · · · , N , the LS
estimate of the polynomial coefficients of the nonlinear subsystem
is given by :

ĉ = U+ŷ (16)

where U = (ū1 · · · ūN )T , and ŷ = (ŷ1 · · · ŷN )T .

3.3 Tensor-based approach for Hammerstein model
identification

3.3.1 Estimation of the linear subsystem. From (9), the fifth-
order Volterra kernel associated with a Hammerstein system is gi-
ven by :

h5(i1, i2, i3, i4, i5)=

{
c5gi,if i1 = i2 = · · · = i5 = i
0, else. (17)

It is a diagonal tensor. Assuming g0 = 1, we can deduce that c5 =
h5(0, 0, 0, 0, 0). The parameters of the linear subsystem can then
be estimated using the following closed-form equation

ĝi =
h5(i, i, i, i, i)

h5(0, 0, 0, 0, 0)
, i = 1, · · · ,M − 1. (18)

3.3.2 Estimation of the nonlinear block. Define the following fil-
tered input sequence

ū(2p+1)
n =

M−1∑
i=0

ĝiun−i |un−i|2p , (19)

The reconstructed output signal and the LS estimate of the polyno-
mial coefficients of the nonlinear block can be calculated by means
of the same equations (15) and (16) as for the Wiener model.

4. SIMULATIONS RESULTS
In this section, we present some Monte Carlo simulation results for
illustrating the performance of the proposed identification methods.

The performance criteria were calculated by averaging the results
over Ns = 300 simulated Wiener or Hammerstein models whose
parameters were randomly drawn from a Gaussian distribution. For
each model of memory M = 3 and nonlinearity degree P = 5, the
generated output signal was perturbed by Nb = 10 different addi-
tive, zero-mean, white Gaussian noise sequences. The performance
is evaluated in terms of Normalized Mean Square Error (NMSE)
on the estimated fifth-order Volterra kernel associated with each
simulated model (NMSEh5

), the output signal (NMSEs), and the
estimated parameters of the linear subsystem (NMSEl) and of the
nonlinear block (NMSEc).

NMSEh5
=10 log

(
1

NsNb

Ns∑
m=1

Nb∑
b=1

‖Ĥm,b −Hm‖2F
‖Hm‖2F

)
,

NMSEs=10 log

(
1

NsNb

Ns∑
m=1

Nb∑
b=1

‖ŝm,b − sm‖22
‖sm‖22

)
,

NMSEl=10 log

(
1

NsNb

Ns∑
m=1

Nb∑
b=1

‖θ̂m,b − θm‖22
‖θm‖22

)
,

NMSEc=10 log

(
1

NsNb

Ns∑
m=1

Nb∑
b=1

‖ĉm,b − cm‖22
‖cm‖22

)
,

where sm, ŝm,b, and Ĥm,b denote, respectively, the simulated out-
put vector, the output vector reconstructed using the estimated pa-
rameters (θ̂m,b, ĉm,b), and the fifth-order Volterra kernel recons-
tructed from the estimated Wiener (θ̂m,b = l̂m,b) or Hammer-
stein (θ̂m,b = ĝm,b) model, associated with the mth simulated
model and bth additive noise sequence. The input sequence is
an i.i.d. 6-RMS (Random Multilevel Sequence), with six levels
{±1,±2/3,±1/3}, and length N . To guarantee the i.i.d. property,
the input sequence was simulated according to the method descri-
bed in [18].

4.1 Estimation of Wiener models
Figure 3 shows the different NMSEs obtained with an input length
N = 6480, while Figure 4 illustrates the impact of SNR, length N
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Fig. 3. NMSEs for different values of SNR for Wiener models
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Fig. 4. Impact of SNR, N and M on NMSEs for Wiener models

and memory M on the NMSEs. From these simulation results, as
expected, the different NMSE decrease when the SNR and/or the
input-output measurements number (N ) increase. On the contrary,
the NMSEs increases when the memory length (M ) increases,
which corresponds to an increase of the number of parameters to
be estimated. Finally, we have to note that the convergence of the
ALS algorithm which takes symmetry of the Volterra kernel into
account, is very sensitive to the initialization. So, for improving the
performance, a multi-initialization scheme is employed, that is, dif-
ferent initializations are used and the one giving the best NMSEs is
kept.

4.2 Estimation of Hammerstein models
Table 2 provides the mean value and the standard deviation of the
estimated parameters, both for the linear and the nonlinear blocks,
for three different values of SNR. From these results, we can
conclude that the estimated parameters of the two subsystems are

Table 2. Mean value and standard deviation of the estimated parameters of the
two subsystems of Hammerstein system

Actual Estimated Parameters ĝ(.)

Parameters g(.) SNR=0dB SNR=20dB SNR=40dB

1 1 1 1

−0.9858+0.3643j
−0.8170−0.0223j
±1.0074

−0.9905+0.3551j
±0.0174

−0.9872+0.3639j
±0.0016

1.5749 + 0.1461j
0.9395 + 0.6020j

±1.1373
1.5663 + 0.1496j

±0.0690
1.5763 + 0.1478j

±0.0018

Actual Estimated Parameters ĉ(.)

Parameters c(.) SNR=0dB SNR=20dB SNR=40dB

−0.5182+0.8955j
−0.2917+0.6037j

±0.8474
−0.5178+0.8946j

±0.0110
−0.5175+0.8951j

±0.0017

−0.3523+0.0592j
−0.8175+0.4592j

±2.3832
−0.3618+0.0926j

±0.1714
−0.3521+0.0616j

±0.0132

−0.7817−1.1243j
−0.9181−0.5130j

±1.3983
−0.7866−1.1242j

±0.0734
−0.7802−1.1228j

±0.0064

0.5146 + 2.2071j
0.8538 + 1.3205j

±2.3601
0.5171 + 2.1824j

±0.0395
0.5158 + 2.2032j

±0.0065

1.2132− 1.0222j
1.1216 − 1.0222j
±1.0992

1.2203 − 1.0222j
±0.0434

1.2103 − 1.0222j
±0.0015
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Fig. 5. Impact of SNR, N and M on NMSEs for Hammerstein models

close to the actual ones for SNR≥ 20dB. However, for SNR=0dB,
the estimation performance is notably degraded, showing that the
closed-form solution (18) is not robust to the additive noise.
The impact of SNR,N , andM on NMSes is shown in Figure 5. As
previously, the NMSEs decreases when the SNR and/or the number
N of measurements increase, while it increases whenM increases.

5. CONCLUSION
We have presented two methods for identifying fifth-order Wiener
and Hammerstein nonlinear communication channels. These me-
thods rely on the associated fifth-order Volterra kernel, estimated
by means of a closed-form solution which uses input-output cross-
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moments, with an i.i.d. input signal [12]. They estimate separately
and sequentially the linear and the nonlinear blocks. The parame-
ters of the linear block are directly linked with the Volterra ker-
nel. This kernel viewed as a complex symmetric tensor admits a
rank-one PARAFAC decomposition in the case of Wiener systems,
and it is diagonal in the case of Hammerstein systems. These spe-
cial tensor structures are exploited for deriving a single step ALS
algorithm with multi random initializations, in the first case, and
a very simple closed-form solution in the second case. The non-
linear block is then estimated using a standard non-recursive LS
algorithm. As illustrated by means of simulation results, the propo-
sed estimation methods provide very good performance for a wide
range of SNR values. As perspective for future work, we can men-
tion the study of the statistical efficiency of the proposed estimators
through the determination of Cramér-Rao bounds (CRB), as re-
cently carried out for tensor PARAFAC decompositions with struc-
tured factor matrices [2]. Another perspective concerns the compa-
rison of the proposed channel estimation methods with a method
based on Volterra-PARAFAC modeling of nonlinear channels [3].
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