
International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.8, August 2015

27

Using Mobile Platform to Detect and Alerts

Driver Fatigue

Maysoon F. Abulkhair
Department of Information

Technology, Faculty of
Computing and Information
Technology, King Abdulaziz

University
B.P. 42808 Zip Code 21551-
Girl Section, Jeddah, Saudi

Arabia

Hesham A. Salman
Department of Information

Systems
Faculty of Computing and

Information Technology King
Abdulaziz University

Lamiaa F. Ibrahim
Department of Information

Technology, Faculty of
Computing and Information
Technology King Abdulaziz

University
Institute of Statistical Studies

and Research, Cairo
University

ABSTRACT

When driver is in the state of drowsiness he can cause

accidents. This state is the state between being awake and

asleep. In this state driver reaction time is slower, his

attentiveness is reduced, and his information processing is less

efficient. Driver Fatigue Detection System (called FDS) has

been proposed by the authors in a recent work. The FDS aims

to monitor the driver and the alertness to prevent them from

falling asleep at the wheel. FDS is very hard to fix in a car. In

the present paper, the FDS software is modified and new

system WakeApp is developed to be run in smartphone

instead of Laptop and use all advantages of smartphone

like camera and late weight. The WakeApp will solve this

problem by using a mobile phone camera; the phone will be

put on a stand in the car to make the driver feels comfortable.

The WakeApp has hardware and software components such as

mobile camera and Android SDK. Both components are

integrated together to record real video for the driver, and then

processing it for real-time eye tracking. WakeApp has reserve

all advantages in FDS like fast and real-time face and eye

tracking, external illumination interference is limited, more

robustness and accuracy allowance for fast head/face

movement. The Main goals of WakeApp are to ensure that the

driver is staying awake during his drive, make the driver feels

comfortable and to help decrease the number of accidents.

Keywords
FDS, Android SDK, WakeApp

1. INTRODUCTION
For the comfortable drive and the safety of drivers, the

intelligent car has been developed [1]. The significant factor

in a large number of car accidents is driver fatigue. Recent,

about 1500 deaths and 40,000 damages can be attributed

annually to fatigue related crashes [2]. Many algorithms and

architectures have been proposed in order to prevent the

unexpected accidents during drive [3-8]. Three techniques are

used to detect Driver fatigue: physiological measurements,

driving performance and visual cues. Techniques of driver

fatigue detection are overviewed in [9].

Measure features such as brain waves (EEG) [10], eye

movements (EOG) and the electrocardiogram (ECG) signals

of driver, which are Physiological measurements, are

measured by attaching electrodes to the driver [11]. Attaching

electrodes to the driver disturb him.

Although devices that monitor driver head nodding are

generally less intrusive than others, their general problem is

that operator performance has probably already declined to

unsafe levels before the head nods forward in a fatigued /

sleepy state because measures become apparent only after the

driver starts to sleep, which is often too late to prevent an

accident.

By monitoring how the driver handles the vehicles, such that

the variations in the steering wheel angle, vehicle lateral

position or vehicle speed, system can detect driver fatigue

[12]. Therefore, trajectory of the vehicle can be used as a

metric of fatigue. [13] and [14] proposed prototype systems

constructed on this fatigue metric.

E-class Mercedes-Benz vehicles in 2008 has introduced the

Attention Assist system [15] which is based primarily on

steering wheel movements. This system is sensitive to

unfortunate roads, variation in weather and driver expertise.

Therefore driver performance is not use in our

implementation.

In [16] the authors’ development of the PERCLOS

(percentage of eye closure) metric of fatigue which is a Visual

cues from a driver’s face as an indicator of fatigue. [17]

Confirms the scientific validity of PERCLOS. Many

commercially system are implemented using PERCLOS

metrics for examples of such systems are AntiSleep developed

by Smart Eye AB [18] and Driver State Sensor (DSS)

developed by Seeing Machines [19].

Based on the projection of the image many propose systems

are invention such as in [20] the vertical projection of the

image of both eyes is used to determine the state of an eye.

Method based on combination of projection and the geometry

feature of iris and pupil is proposed in [21]. In [22], a

horizontal projection image of an eye is used to determine the

interval between eyebrows and eyelids and to recognize the

state of an eye. In [23], to determine state of an eye, the

horizontal projection of the image of a face is calculated.

In [24] Artificial neural networks, SVMs and AdaBoost are

three different classification techniques used in this work.

This work proof that the AdaBoost is suited for eye

classification in a real-world application,

In this paper, the developers will focus on measuring the

percentage of eyelid closure covering the pupil over time,

because this vision-based method is not intrusive and will not

cause annoyance to drivers, and it gives accurate results. This

paper is an extension version of paper [25] Section 2

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.8, August 2015

28

summarizes the design and implementation of the system,

Section 3 demonstrates the comparison of WakeApp and other

systems. The paper's conclusions are presented in Section 4.

2. DESIGN AND IMPLEMENTATION OF

THE SYSTEM
Driver Fatigue Detection System (called FDS) has been

proposed by the author in a recent work [26]. The FDS aims

to monitor the driver and the alertness to prevent them from

falling asleep at the wheel. In the present paper, the FDS

software is modified WakeApp is introduced to be run in

smartphone instead of Laptop which is very hard to fixed in

car and use all advantages of smartphone like camera and late

weight. WakeApp application uses image processing

technique and Snapdragon library which is a library in

Qualcomm Company used to detect driver’s fatigue state.

Image processing realizes highly accurate and reliable

detection of drowsiness. Also it offers a non-disturbing

approach for detecting drowsiness without disturbed the

driver. The developers have seen some of the popular image

processing techniques. These techniques are: yawning

detection, head nodding detection and eyelid movement.

Yawning technique has several drawbacks such that lip

positions are difficult to detect precisely. Head nodding

technique also has many drawbacks which are: this method

requires equipment to be attached by electrode to the vehicle

operator, which can be intrusive. The operator performance

has probably already declined to unsafe levels before the head

nods forward in a fatigued sleepy state. The system detects

drowsy state using eyelid movement technique.

2.1 Algorithms used:
This section explain the different algorithms used in

WakeApp system.

2.1.1 Face detection using Haar-like Classifier

Cascades
In this system the developers use Data Classification Mining

technique for detecting face. Classification is "the task of

assigning objects to one of several predefined categories". It

is "the task of learning a target function (classification model)

that maps each attribute set to one of the predefined class

label". The classification model can serve as an explanatory

tool to distinguish between object of different classes " [26].

Figure 1 illustrates the face detection procedure used in the

WakeApp system.

2.1.2 Eye detection using template matching

algorithm
Template Matching is used to detect object. In this template

matching method, input image is created by a standard eye

pattern manually. To determine the existence of an eye the

correlation values with the standard patterns are computed for

the eyes and is determined based on the correlation values.

This approach is simple to implement [27].

Create empty Array

Copy the data (pixels) from the original image

Detect face using haar-like classifier

If face found then return a pointer to the face rectangular

regions

 Else go to detect face

 Fig 1: pseudo code of face detection procedure

In this work, the new technique from QUALCOMM

Company which name Snapdragon is used. This is the highest

performing mobile processor with the most advanced 4G LTE

connections. It is designed to uses less power than any other

mobile processor with integrated 4G LTE and 64-bit

computing performance [28, 29].

2.2 System Operation
The system will start by the user, by choosing "Start camera"

button. Also, it uses high resolution digital video camera to

detect the face and eyes in the real time. The developers used

several methods to detect the face and eyes:

2.2.1 Snapdragon SDK for Android:
Snapdragon SDK for Android is a package of software

libraries, sample code, and documentation designed to make it

easy to integrate a host of next-gen technologies into apps that

run on Snapdragon processor-powered mobile devices. Now,

developers and device manufactures can include capabilities

like facial processing, facial recognition, and more to

transform the user experience [29].

2.2.2 Facial Processing
Its library in Snapdragon SDK which included intelligent

automation of the live camera and auto-filtering of optimal

images in a photo library, both based on faces in an image

with eyes open and facing the camera. Other concepts have

revolved around face and head tracking as user input for

hands-free remote control by tilting the head or tracking eye

blinks

The facial processing track a variety of facial properties with

each frame:

 Blink Detection – measure how open each eye is

 Gaze Tracking – assess where the subject is looking

 Smile Value – estimate the degree of the smile

 Face Orientation – track the Yaw, Pitch and Roll of

the head

These capabilities work with both real-time and stored images

and videos [30].

The application has many choices that are:

1. Start Camera: This option will start the main goal of the

application. When the user chooses this option the

system will access phone's front camera by default, to

start detect user's face and eyes.

2. Settings: From this option the user can control several

features such as: tone of the alarm, tone volume, and

choose which camera that the user wants to used

(front or back camera).

3. How To Use: This option will help the user to knowing

how to use the application by illustrations.

4. About Application: Contains a brief description about

the application as well as a "Share" button that allow

the user to share through social media.

5. Contact Us: The functionality here opens new window

which lets the user to be contacted with the developers

by choosing one of the mail applications.

2.3 System Requirements:
This section describes system requirements which include the

hardware and software.

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.8, August 2015

29

2.3.1 Hardware
We will illustrate the hardware needed in this section.

2.3.1.1 Built in Phone Camera
The developers use phone built-in camera to detect the

driver's eyes. In order to make the camera works as a

monitoring camera, the developers implemented the

application used that camera to alert the driver.

2.3.1.2 Stand for Mobile
This tool is purchased by the user, it’s used to stand the

mobile in a suitable position to allow the application to detect

driver's eye and to improve application performance.

2.3.1.3 Car's Charger for the Mobile
WakeApp will be running while the user is driving, thus to

prevent loosing the mobile charges, the user needs the charger

to charge his mobile phone.

2.3.2 Software:
This section lists the variance software in system.

2.3.2.1 Snapdragon SDK for Android
As mentioned earlier Snapdragon SDK is a package of

software libraries, which is working in Android mobile

platform. It has sample code, and documentation designed to

facilitate the apps development and to integrate a host of next-

gen technologies into apps that run on Snapdragon processor-

powered the mobile devices. These features help WakeApp

developers to include capabilities like facial processing, facial

recognition, and more to transform the driver's experience.

2.3.2.2 Android OS:
Android is a software stack for mobile devices that includes

an OS, middleware and key applications. It’s also a free, open

source mobile platform. Android is not a device or a product

and it is not even limited to a certain brand of mobile phones -

you could build a DVR, a handheld GPS, an MP3 player [30,

31].

2.3.2.3 Eclipse:
Eclipse is a platform used for building integrated web and

application development tooling. It helps in acceleration of

development of integrated features based on a plug-in model.

“It provides a common user interface (UI) model for working

with tools” [32].

2.3.2.4 Java SDK:
To build, test, and debug the Android application, we used the

Android SDK which provides the API libraries and developer

tools necessary. It consists of the essential Android SDK

components and a version of the Eclipse IDE, with built-in

ADT (Android Developer Tools)[33].

2.3.2.5 Android NDK:
“The NDK is a toolset that allows implementing parts of the

application using native-code languages”[34].

2.4 Work procedures
In the project there are several files that did the basic work of

it - data processing and handling of the system- these files are

as follow:

1- CameraPreviewActivity.java This is the key

file in the entire project, and it is also the large

one in terms of number of code lines.

2- CameraSurfacePreview.java It provides a way

to get the contents of the camera, or in other

words, the camera turns to a usable surface and

works with it directly so that the images can be

processed either by reading from or writing on

them. This file depends heavily and directly on

the Android libraries, especially in dealing with

the camera where it inherits directly the class

SurfaceView, and uses the interface Surface

Holder to follow up on any changes occur on the

surface of the camera's image.

3- DrawView.java This file has a simple role. It

draws directly on the video, but based on the

calls he receives from the key file. All

information sent from the key file and this file

as we have said hereditary from SurfaceView

but here it is used to draw on the surface.

4- AlarmActivity.java This file is responsible for

issuing the alarm sound after detecting the

closure of the eyes, based on the information in

the screen settings file such as voice alarm and

sound level.

Once a video frame enters the system it goes through a series

of functions and methods. Each function will perform an

operation on the image in a real time to detect the face and

eyes of the user. The sequence of these operations will be

performed in the main class (CameraPreviewActivity) as the

following:

1- From Start Camera button the camera will be

opened by calling it from the main camera class and

it will be ready to detect and gather information

about user face and eyes.

2- Getting instance from facial processing library.

3- From camera surface preview class the developers

initiate new CameraSurfacePreview() object to

prepare a good surface for camera to reach the

components of the camera and it can uses the

camera in easy and direct way to handle pictures

either by reading from or writhing on the pictures.

4- After that facial processing sets frame by setFrame()

method.

5- Then it uses getNumFaces() to return the number of

faces that are displayed on the camera surface.

 If it returns > 0 that means there is a face to detect

so it will continue to the next function, else it will

repeat the method until it finds the face.

6- When the face has been detected, the new

DrawView() method from DrawView class will be

activated to determine right eye, left eye and the

face.

7- addView(drawView) will be added to the camera

surface preview.

8- Final step is in the alarm activity which it will

compare intBlinkCount with detectspeedvaribles,

and if intBlinkCount>detectspeed the alarm will be

activated.

9- After that stopping the alarm will cause returning to

the camera preview activity class.

10- Stopping the camera and finishing the main

function.

Figure 2 summarize the system

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.8, August 2015

30

Fig 2: Summary of system steps

2.5 Quality requirements
"Quality requirements ensure the system possesses quality

attributes such as: usability, efficiency, reliability

maintainability and reusability":

1- Response time: WakeApp application is a real time

system. So the response time is the time elapsed

between the dispatch (time when task is ready to

execute) to the time when it finishes its job. In the

system, the response time between analyzing the frames

and alerting the driver is approximately 40 ms.

2- Resource usage: WakeApp application needs at

maximum 45-50 MB RAM. Also the application

consume between12-18% of CPU's time.

3- Reliability: WakeApp application may suffer one

failure at a year.

4- Availability: WakeApp application must be 99.9999%

of the time.

5- Allowances for maintainability and enhancement:

WakeApp application can be improved to have more

features.

6- Allowances for reusability: In WakeApp application,

20% of analyzing function will be designed generically

in order to be reused.

2.6 User interface design
User interface is the space where interaction between humans

and machines occurs and allow user in making operational

decisions to operate machines [35].

Figure 3 represents the splash page that will firstly present the

user, it contains the logo of the application and it will load the

application. Figure 4 shows the main interface of the

application. There are five basic buttons and the logo of the

application.

Fig 3: Splash screen

2.6.1 Buttons Description of the main page:
All the five buttons are used to transform to another page, this

buttons are:

1. Start Camera button: This button takes the user

to the page that allows the user to start running the

application by turning on the camera and start

initiate tracking. It has a sub-page that contains

"Stop Alert" button which allows the user to stop the

alarm.

Fig 4: main page

2. Setting button: This button takes the user to the

page that allows the user to change the default

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.8, August 2015

31

settings of the application; it allows the user to

control which tone he/she wants, the size of sound

volume, and choose which camera he/she wants.

3. How to use button: This button takes the user to

the page that shows the user how to use the

application in a slide pictures.

4. About Application button: This button going to

page that contains simple description about the

application and it allows the user to share the

application with her/his friends by the social media

programs, also it contains the Contact Us button.

5. Contact Us button: This button will display e-mail

applications that are installed in the phone of the

user and he/she can choose any one of those

applications to be connected with the developers.

2.6.2 Pages Description:
In this section we will describe different pages.

2.6.2.1 Start Camera page:
Figure 5 illustrates the first page after pressing the start

button, the camera will be turned on directly and it will detect

the face and the eyes of the user. Square will be drown around

user face plus three dots will identify three important areas on

the face [two are on the eyes and the third will be on the

mouth].

So, the statue of the eyes will be observed and detected. Then,

when the eyes are going to be closed in case of sleeping or

drowsiness the application will start creating some noise to

alarm the user and it will open the sub-page that contains

"Stop Alert" button to stop the alarm.

2.6.2.2 Setting page:
The screen, presented in Figure 5, contains options divided

into two groups [Screen Settings and Sound Settings], that

allow the user to modify the default settings of the

application. These options are:

2.6.2.2.1 Screen Settings:
 Detecting Speed: Allows the user to determine the

number of seconds he/she wants to be alarmed after

his/her eyes are detected in a sleepy mode. He/she can

choose between 1 to 50 seconds, this option is very

important because it makes the application more

flexible and useable.

 Use Back Camera: From this option the user can

choose if he/she wants to change the default camera -

which is the front camera- to the back camera and vice

versa by checking/un-checking it.

 Display Information: From this option the user will be

able to choose if he/she wants the application to

display some information on the screen of the camera

page, these information is: how many number of faces

are detected at the same time and the count of the eyes

closed.

Fig 5: Start Camera page

2.6.2.2.2 Sound Settings:
 Alarm Tone: It allows the user to choose the

alarm tone from window that contains a list of

all device ringtones.

 Alarm Level: The user also can control the

volume of the alarm sound.

Fig 6: Screen Setting

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.8, August 2015

32

2.6.2.4 About Application page:

Fig 7: About Application page

This page includes little description "about the application"

that shows the copyright of the application and simple idea

about it .

1. Back button : Back to main page .

2. Description about the application , and shows the

copyright of the application and simple idea about it

3. Share button : When the user click the button it opens a

window that contains the social media applications

that exist in the user phone. Then, the user can choose

any of this social media to share the application with

his/her friends. By default there is a small sentence

written by the developers which is: (Hello guys =),

don’t skip this app . It’s so great. Download it now).

2.6.2.3 How to use page:
Series of screens presented in Figure 8, which are contain

instructions that help the user to use the application

efficiently.

1. Back button: Back to main page..

2. Image illustration containing instructions on how to

use the application.

3. EVALUATION PERFORMANCE
COMPARISON
To assess the performance of the systems developers use the

following criteria:

1. Accuracy: "is the ratio of an error to the range of

possible output (full scale output) values” [36].

2. Reliability: "is the average amount of time between

failures or the probability of a failure in a given

period” [37].

3. Latency (Delays):" which is units that cause a time-

shift in the input signals”[36].

Table 1 compares the WakeApp system with DFS

system.

Table 2 will show the success criteria results for the

previous systems. It also shows the success criteria results of

WakeApp system.

From the table 1 and 2 the developers conclude the

following results:

1. The accuracy of WakeApp is better than three systems

(DFM, SmartEye Pro 3.0, Yawning Detection For

Monitoring Driver Fatigue).

2. The reliability of WakeApp is better than Yawning

Detection for Monitoring Driver Fatigue system,

RPI Prototype Fatigue Monitor.

3. WakeApp has the lowest latency comparing with

other systems.

4. WakeApp is the only system run in Mobile platform.

4. CONCLUSION
In this work, Information about the face and eyes status is

obtained through various image processing algorithms.

During the monitoring, the system is able to decide if the eyes

are opened or closed. When the eyes have been closed for

certain predefined time, an alarm sound is issued. In case of

any type of error, the system is able to recover and properly

localize the eyes.

The main components of the system consist of a hardware

system which is the smartphone and software

implementations for real-time video images of the driver face

and eye tracking.

With the developer`s active system, the developers can

achieve the followings: Real-time eye and face tracking,

minimize external illumination interference and use the

capabilities of Smartphone such as camera and small

hardware which can fixed in the car which make driver feels

comfortable.

Experimental results show that our system yields a much

more robust and accurate fatigue detection. This system has

many advantages over the existing system. The system is fast

and achieves real-time eye and face tracking. It is less

sensitive to external illumination interference and can work in

both day time and night time conditions. It is more robust,

accurate, and allows fast head movement. Moreover,

WakeApp is run in smartphone instead of Laptop and use all

advantages of smartphone like camera and late weight.

According to user requirements, there are recommendations

for future work to develop this version in the future to include

a larger number of devices and operating systems like iphone

(iOS) and blackberry. Also, to add GPS feature to the program

to help the driver to know the roads while driving without go

out of the program.

5. ACKNOWLEDGMENTS
Our thanks to Arwa H. Alsahlia, Kawther M. Taleba, Atheer

M. Bahrana, Fatimah M. Alzahrania and Hend A.

Alzahrania have worked and help with us towards

development of the system.

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.8, August 2015

33

6. REFERENCES
[1] SangkyunP, Seonyoung L, Soojin K, Kyeongsoon C.

2011. Design of AdaBoost classifier circuit using Haar-

like features for automobile applications. International

SoC Design Conference (ISOCC) (17-18 Nov. 2011), pp:

262 – 265.

[2] Konstantin P. 2010. Statistics Related to Drowsy Driver

Crashes, (7 Jul. 2010), www.americanindian.net.

[3] Sun Z, et al. 2006. On-road Vehicles Detection: A

Review. IEEE Trans. On Pattern Analysis and Machine

Intelligence, (May 2006), 28- 5: 649-711.

[4] Dollar P, et al. 2009. Pedestrian Detection a Benchmark.

Proc. Of IEEE conference on Computer Vision and

Pattern Recognition, (Jun 2009), 304-311.

[5] Rasolzadeh B, et al. 2006. Response Bining: Improved

Weak Classifiers for Boosting. IEEE Intelligent Vehicles

Symposium, 2006; 344-349.

[6] Viola P, et al. 2003. Detecting Pedestrians Using Patterns

of Motion and Appearance. IEEE International

Conference on Computer Vision, (Oct. 2003), 2: 734-

741.

[7] Zheng W, Liang L. 2009. Fast Car Detection Using

Image Strip Features. IEEE Conference on Computer

Vision and Pattern Recognition, (Jun. 2009), 2703-2710.

[8] Sivaraman S, Trivedi M. 2009. Active Learning Based

Robust Monocular Vehicle Detection for On-road Safety

Systems. IEEE Intelligent Vehicles Symposium, 399-

404.

[9] Coetzer R, Hancke G. Driver fatigue detection: A survey.

IEEE AFRICON Conference; September 2009.

[10] Lal S, Craig A, Boord P, Kirkup L, and Nguyen H.

Development of an algorithm for an eeg-based driver

fatigue countermeasure. Journal of Safety Research; Feb.

2003; 1-34: 321–328.

[11] Seong K, Haet L , Jung K, Jae B, Suk B, Suk K. 2007.

ECG, EOG detection from helmet based system. 6th

International Special Topic Conference on Information

Technology Applications in Biomedicine ITAB 2007,

191–193.

[12] Boyraz P, Hansen J. 2008. Active accident avoidance

case study: integrating drowsiness monitoring system

with lateral control and speed regulation in passenger

vehicles, IEEE International Conference on Vehicular

Electronics and Safety, ICVES 2008, 293–298

[13] Sayed R, Eskandarian A. 2001. Unobtrusive drowsiness

detection by neural network learning of driver steering.

Proceedings of the Institution of Mechanical Engineers,

Part D: Journal of Automobile Engineering, (Jun 2001)

215-9: 969–975.

[14] Eskandarian A and Mortazavi A. 2007. Evaluation of a

smart algorithm for commercial vehicle driver

drowsiness detection. Intelligent Vehicles Symposium,

IEEE (Jun 2007), 553–559.

[15] Breuer J. 2008. Attention assist: Don’t fall asleep!.

Daimler, Tech. Rep (November 2008).

[16] Wierwille W, Ellsworth L, Wreggit S, Fairbanks R, and

Kim C. 1994. Research on vehicle-based driver

status/performance monitoring: development, validation

and refinement of algorithms for detection of driver

drowsiness. National highway traffic safety

administration, 808- 247.

[17] Dinges D, Mallis M, and Powell J. 1998. Evaluation of

techniques for ocular measurement as an index of fatigue

and the basis for alertness management. Department of

transport safety, (April 1998), 808-762.

[18] SmartEye 2010. Antisleep 2.0. Internet published

whitepaper, [accessed November 2010].

[19] Seeing Machines. 2007. Driver state sensor. user

manual 2.0.

[20] Tabrizi PR, Zoroofi RA. 2009. Drowsiness detection

based on brightness and numeral features of eye image.

Fifth International Conference on Intelligent Information

Hiding and Multimedia Signal Processing IIH-MSP'09,

1310– 1313

[21] Zhang Z, Zhang J S. 2006. Driver fatigue detection

based intelligent vehicle control. The 18th IEEE

International Conference on Pattern Recognition.

[22] Devi MS, Bajaj PR. 2008. Driver fatigue detection based

on eye tracking. First International Conference on

Emerging Trends in Engineering and Technology, 649–

652

[23] Hong T, Qin H, Sun Q. 2007. An improved real time eye

state identification system in driver drowsiness detection.

IEEE International Conference on Control and

Automation (May 2007), 0: 1449–1453

[24] Coetzer R C, Hancke G P. 2011. Eye detection for a real-

time vehicle driver fatigue monitoring system. 2011

IEEE Intelligent Vehicles Symposium (IV) , (5-9 June

2011), 66 – 71

[25] Maysoon Abulkhair, Arwa H. Alsahli, Kawther M.

Taleb, Atheer M. Bahran, Fatimah M. Alzahrani,

Hend A. Alzahrani, Lamiaa Fattouh Ibrahim, 2015.

Mobile Platform Detect and Alerts System for Driver

Fatigue, The 2015 International Conference on Soft

Computing and Software Engineering (SCSE 2015),

Berkeley,California, USA, (March 5-6), 2015.

[26] Lamiaa F. Ibrahim, Maysoon Abulkhair, Amal D.

AlShomrani, Manal AL-Garni, Ameeerah AL-

Mutiry, Fadiah AL-Gamdi, Roaa’a Kalenen, 2014.

Using Haar Classifiers to Detect Driver Fatigue and

Provide Alerts. Multimedia tools and applications,

Springer, 71-3: 1857-1877, DOI: 10.1007/s11042-012-

1308-5.

[27] Wang X, Wang Z, Sun J, Zhang H. 2005. The correlation

template matching algorithm based TD filter and ESO

filter. International Conference on Machine Learning

and Cybernetics, Guangzhou, China, 9:5361–5365

http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=6138760&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3DHaar+Classifiers
http://ieeexplore.ieee.org/search/srchabstract.jsp?tp=&arnumber=6138760&openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All%26queryText%3DHaar+Classifiers
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6126155
http://www.americanindian.net/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.Coetzer,%20R.C..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=Authors:.QT.%20Hancke,%20G.P..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5930385
http://link.springer.com/journal/11042/71/3/page/1

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.8, August 2015

34

[28] Adam Kerin. 2014. Introducing the Snapdragon 810 and

808 Processors:The Ultimate Connected Computing

Experience. www.qualcomm.com/media. [Online] (Apr.

2014).

[29] Qualcomm Technologies. Snapdragon SDK for Android.

www.developer.qualcomm.com/mobile-development.

[Online]

[30] Google. Mobile Courses, Android Development.

www.developers.google.com. [Online] (Sep. 2012).

[31] D. Switkin , Senior Software Engineer, Google Inc.

Android Application Development.

www.moss.csc.ncsu.edu. [Online]

[32] Eclipse Org. Eclipse. www.help.eclipse.org. [Online]

[33] Android Developer. The Android SDK.

www.developer.android.com. [Online]

[34] Android NDK. www.Developer.android.com. [Online]

[35] Wambler, scott. Agile Modeling.

www.agileModeling.com. [Online]

[36] The Complete Mining Fatigue Monitoring system.

www.ifatigue.com/iFatigue%20Fleet%20Monitoring%20

System.pdf. [Online]

[37] "Accuracy." Business Dictionary.

www.businessdictionary.com. [Online] (Feb. 2011).

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.8, August 2015

35

7. APPENDIX

 Fig 8: How To Use page

Table 1. Comparison between WakeApp and FDS systems

Criteria The percentage of accurate in WakeApp

system

The percentage of accurate in FDS

system

In morning 99% 99%

In night 30% 30%

When the head’s driver moving

frequently

99% 80%

When the driver wearing sunglass 20% 20%

When the driver wearing eyeglass 95% 90%

Table 2. Comparison between WakeApp system and other similar systems.

System name Accuracy Reliability Latency Mobile Platform

Attention Technology Driver Fatigue

Monitor (DFM)

Medium high Medium No

SmartEye Pro 3.0 Low high High No

Johns Hopkins APL (DDDS) High high Low No

RPI Prototype Fatigue Monitor High medium Low No

Yawning Detection For Monitoring Driver

Fatigue

FDS

Medium

High

Low

Medium

Medium

Low

No

No

WakeApp High High Very Low Yes

