
International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.8, August 2015

7

Formal Development of Basic Timestamp

Concurrency Control Mechanism using Event-B

Girish Chandra
Computer Science & Engineering Department

Institute of Engineering & Technology
Lucknow, India

Divakar Yadav
Computer Science & Engineering Department

Institute of Engineering & Technology
Lucknow, India

ABSTRACT
Formal methods are mathematical techniques that are used to

develop model of complex systems. They provide

mathematical proofs for ensuring correctness of model.

Through formal methods, it may possible to identify and

remove errors at prior stage of development. Event-B is a

formal method that is used to develop those systems that can

be modeled as discrete transition systems. It rigorously

describes the problem and verifies the correctness of model

by discharging proof obligations. It performs the consistency

checking by preserving invariants of model. In this paper, we

have done formal verification of basic time stamp mechanism

using Event-B. Basic time stamp is concurrency control

mechanism to control concurrent execution of transactions.

The main objective of timestamp is to execute transactions

such that their execution is equivalent to serial execution in

time stamp order.

Keywords
Formal Methods; Formal Specifications; Event-B; Database;

Transaction; Basic Timestamp Mechanism.

1. INTRODUCTION
The tremendous growth of complex system has developed

research interest to build system which is free from failures.

Due to faulty specification, it may possible that developed

system may involve errors that may cause failure of the

system. For safety critical system, fault tolerance and

reliability are the main features. Therefore, it is highly

recommended that system must capture correct specification

and it should be rigorously verified during its development.

The size of state space is very large for complex system. It is

unfeasible to correctly verify every execution path for such

system using traditional testing methods.

Formal methods are mathematical techniques that are used for

modelling and verification of complex systems [1]. They

provide mathematical proofs for ensuring correctness of

system. Through formal specifications, the system can be

correctly verified at the design stage of the development [2].

Formal specifications are well defined mathematical

semantics whose purpose is to model the correct system by

formalizing all system requirements while hiding

implementation details [3]. Event-B [3] [4] [5] is a formal

method that is used to develop those systems that can be

modeled as discrete transition systems. Modeling through

Event-B supports stepwise development of model. It verifies

abstract specification and adds details in refinement steps in

order to obtain concrete specifications [4].

In distributed database system, scheduler at each site is

responsible for managing concurrent access to data items

stored at that site [6]. Concurrency control is activity of

controlling concurrent execution of transaction such that data

consistency is maintained [7]. Serial execution of transactions

provides high consistency to database but it losses the

efficiency of system. In serial execution, it may possible that

transaction has to wait for longer period of time [6].

Therefore, parallel execution of transactions is preferred. The

main difficulty during parallel execution of transaction is how

to maintain the consistency. For achieving it, concurrency

control synchronizes the concurrent execution of transaction

by preventing the modification of data objects when any

transaction is accessing it. Synchronization of transaction

execution is done either by applying the locks or by using

timestamp techniques [7]. The lock based techniques ensures

serializability by applying various modes of locks on required

data objects. The timestamp based techniques use timestamp

ordering to determine the order between every pair of

conflicting transactions [7] [8]. In this technique, when a

transaction is submitted in the system a unique timestamp is

assigned to it. The timestamp of transactions decide the

serializability order. For example, if timestamp of any

transaction Ta is less than timestamp of other transaction Tb

then the system must ensure that produce scheduled must be

equivalent to a serial schedule where transaction Ta appears

before Tb. The timestamp based techniques can be further

categorized [7] as basic timestamp based approach,

conservative approach and multi-version concurrency control

system. We have done formal modeling of multi-version

concurrency control system in [9].

In this paper, we have considered basic timestamp based

concurrency control [7] for formal development of our model.

In this approach, transaction will perform successfully read

and write operation on data items if they are not written by

some younger transactions. We have done formal verification

of basic timestamp mechanism using Event-B as a formal

method. The remainder of this paper is organised as follows:

section II briefly outline our modelling approach, section III

describes informal description about our model and events,

section IV presents formal specifications of basic timestamp

mechanism. Finally, section V concludes our paper.

2. EVENT-B
Event-B [2][3][4][5][10][11] is an event driven based formal

method which is an extension of classical B method. It is used

to formalize and develop those systems that can be modeled

as discrete transition systems. Event-B model contains two

basic construct of two types [12] [13]: contexts and machines.

Context represents static part of model. It may contain the

declaration of sets, constants and axioms. Depending on the

requirement set may be carrier set or enumerated set. Axioms

are used to represent properties of sets. On the other hand,

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.8, August 2015

8

machine represents dynamic part of model. It contains the

system variables, invariants, theorems, and events. Variables

may be sets, numbers, relations, functions etc. Invariants

represent properties of model. During the execution of model

value of variable gets change but invariants of machine

should not be violated. The invariants must be preserved

during every execution state of model. The machine may

contain theorems which are additional properties derived from

invariants. A machine can see one or more context. A

machine can be refined by other machine having its own

context. An event clause of machine specifies how the states

are changed. When any event trigger it changes the state of

machine by changing the values of variables. An event is

composed of guards and actions. Guards represent necessary

condition for an event to occur. When guards of any event

become true then corresponding list of actions will be

performed.

Event-B defines proof-obligations [14] [15] that must be

proved in order to support that machine has retained its

properties in form of invariants. During execution of any

event, invariants of machine should not be violated. Precisely,

for each event we have to prove that defined properties of

machine hold before and after of an event execution. We have

used Rodin platform [16] [17] to develop our Event-B model.

For ensuring correctness of our model, it provides the

environment through which all generated proof obligations

can be discharged either automatically or interactively.

3. INFORMAL DESCRIPTION ABOUT

THE EVENTS
We have considered basic timestamp mechanism [7] for

formal development of our model. In this mechanism, when a

transaction is submitted, a unique timestamp is assigned to it.

The main objective of timestamp is to execute transactions

according to their timestamps so that their execution is

equivalent to serial schedule. For each data item, largest read

and write timestamp is also maintained. A transaction

successfully performs read or write operation on a data item if

that data item is written by an older transaction. The

transaction whose timestamp is lesser than other is known as

older transaction. The informal descriptions about the events of

our model are as follows:

3.1 Submission of Transaction
Any fresh transaction may submit in the system. When a
transaction is submitted a monotonically increasing number is
assigned to it. Data items required by transactions are also
assigned to transaction. Initially, status of transaction is
pending. It will not perform any operation until all required
data items become available to it.

3.2 Verifying Conflict With Other

Transactions
After submission of transaction, it may possible that required
data items are already used by some older transactions.
Therefore, transaction will perform conflict checking with
other transactions and if conflict is there then transaction will
wait for the completion of older transaction. When there is no
conflict i.e.; required data items are available then transaction
goes into active state.

3.3 Read Operation
The transaction whose status is active can perform read
operation on required data items. Read operation is successful
if write timestamp of data item is less than transaction
timestamp. After successfully reading, timestamp of data item

is set to as maximum of current read timestamp and transaction
timestamp.

3.4 Write Operation
The transaction may perform write operation on required data
item. Writing on any data item is possible if read and write
timestamp of that data item is less than transaction’s
timestamp. After successfully writing, write timestamp of that
transaction is set to as transaction’s timestamp.

3.5 Abort Operation
Read operation on a data item will be aborted if that data item
is already been written by some younger transaction. Similarly,
a write operation will be aborted if data item is read or written
by some younger transaction i.e. transaction which has already
perform read or write operation has larger timestamp than
transaction which want to do read or write.

4. EVENT-B MODEL OF BASIC TIME

STAMP MECHANISM
We start with concurrency control model of basic time stamp
mechanism where in the context part DATAITEM,
DATAVALUE and TRANSACTION are declared as carrier set.
The set TRANSSTATUS is declared as enumerated set having
the values PENDING, ACTIVE, READCOMMIT,
WRITECOMMIT and ABORT. The machine part contains
variables, invariants and events. The variables, invariants and
initialization event are given in Fig.1.

Fig. 1. Variables, Invariants and Initialization of
Machine

The variable transaction represents set of started transactions.
The variable dvalue is declared as dvalue ∈ database, where in
the context database is declared as:

database ∈ DATAITEM kDATAVALUE

Variables :

transaction, dvalue, transactiontsp, counter, ,readtsp,

transdataitem, writetsp, transstatus, activetrans

 Invariants :

inv1: transaction (TRANSACTION

inv2: transactiontsp : transaction→Natural

inv3: activetrans (transaction

inv4: dvalue : database

inv5: counter: Natural

inv6: transdataitem : transaction→Pow1(DATAITEM)

inv7: transstatus : transaction→TRANSSTATUS

inv8: writetsp : DATAITEM →Natural

inv9: readtsp : DATAITEM →Natural

Initialisation ≙

act1: transaction ≔ ∅

act2: dvalue ≔ db0

act3: transactiontsp ≔∅

act4: counter ≔1

act5: transdataitem≔ { }

act6: writetsp≔ DATAITEM×{0}

act7: readtsp≔ DATAITEM×{0}

act8: transstatus ≔ ∅

act9: activetrans ≔ ∅

End

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.8, August 2015

9

A mapping (dimdv) ∈ database represents that database
consists data item di having its value dv. The variable
transactiontsp is declared as total function from each started
transaction to natural number. It represents timestamp of
transaction. Whenever, a new transaction is submitted this
natural number is incremented by one. The declaration of other
variables are as follows:

 The variable activetrans is declared as subset of started
transactions. It represents set of active transactions for
which conflict checking has been done and data items
are available.

 The variable transdataitem is declared as:

transdataitem ∈ transaction→Pow1(DATAITEM)

It represents set of dataitem required by transaction. A

mapping of form (trmDI) ∈ transdataitem represents
that transaction tr needs data items DI.

 The variable writetsp represents write timestamp of
data item.

 Similarly, variable readtsp represents read timestamp
of data item.

The variable transstatus maps each submitted transactions to
one of its status. At any instance, transaction may be in
following state: PENDING, ACTIVE, READCOMMIT,
WRITECOMMIT and ABORT.

 Fig. 2. Submit_Transaction Event

 Fig. 3. Conflict_Checking Event

4.1 Submit_ Transaction Event

This event models the submission of transaction (Fig. 2). The

guard grd1 and grd2 ensure that transaction tr is fresh

transaction. The dataitem is a set which contain all data items

required by transaction tr. Each time when a transaction is

submitted a unique timestamp is allotted to it (act2). The

action act4 specifies that dataitem are assigned to transaction

tr. The status of transaction tr is set to as PENDING through

act5.

4.3 Conflict_ Checking Event

Data items required by the submitted transaction may be

locked by other transactions. This event formalizes conflict

checking process (Fig. 3). The guard grd2 specifies that

transaction tr is not active transaction. The guard gr3 ensures

that status of transaction tr is PENDING. The guard grd4 is

written as:

∀tt·(tt∈ activetransG transdataitem(tr)∩ transdataitem(tt)=∅)

It ensures that data items required by transaction tr are not

conflict with data items used by other active transactions tt i.e.

(transdataitem(tr) ∩ transdataitem(tt)) will be equal to ∅.

This event sets the status of transaction tr as ACTIVE.

4.4 Read_ Operation Event

Read_Operation event is given in Fig. 4. The transaction will

perform successfully read operation on data item if write

timestamp of data item will be less than transaction timestamp

 Fig. 4. Read_Operation Event

The guard grd3 represents that transaction tr wants to read

data item di. The status of transaction tr is ACTIVE is ensured

by guard grd4. The write timestamp of data item di is less

than transaction’s timestamp tr is ensured through grd5. The

guard grd6 is written as:

sel = ({readtsp(di),transactiontsp(tr)})

It represents a set sel which contains read timestamp of data

item di and timestamp of transaction tr. The guard grd9

returns the value of data item di. The occurrence of this event

updates the read timestamp of data item di. The new read

timestamp of data item di will be maximum value of current

read timestamp of data item di and timestamp of transaction tr

(act1). The action act2 sets the status of transaction tr as

READCOMMIT.

4.5 Write_ Operation Event

This event formalizes update operation (see Fig. 5). Any

active transaction may perform successfully write operation

over data item if transaction’s timestamp will be greater than

Read-Operation ≙

Any tr, di, sel, readvalue Where

grd1: tr : activetrans

grd2: di: DATAITEM

grd3: di: transdataitem(tr)

grd4: transstatus(tr) = ACTIVE

grd5: writetsp(di)< transactiontsp(tr)

grd6: sel=({readtsp(di), transactiontsp(tr)})

grd7: sel ≠∅

grd8: finite(sel)

grd9: readvalue = dvalue(di)

Then

act1: readtsp(di) ≔max(sel)

act2: transstatus(tr) ≔READCOMMIT

End

Submit_Transaction ≙

Any tr, dataitem Where

grd1: tr : TRANSACTION

grd2: tr / transaction

grd3: dataitem : Pow1(DATAITEM)

Then

act1: transaction ≔ transaction U {tr}

act2: transactiontsp(tr) ≔ counter

act3: counter ≔ counter+1

act4: transdataitem(tr) ≔ dataitem

act5: transstatus(tr) ≔ PENDING

End

Conflict_Checking ≙

Any tr Where

grd1: tr : transaction

grd2: tr / activetrans

grd3: transstatus(tr)=PENDING

grd4:
∀ tt·(tt ∈ activetrans⇒
transdataitem(tr) ∩ transdataitem(tt) =∅)

Then

act1: transstatus(tr) ≔ ACTIVE

act2: activetrans ≔ activetrans U {tr}

End

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.8, August 2015

10

read and write time stamp of data item. The guard grd7 and

grd8 ensure that write and read timestamp of data item di are

less than transaction’s timestamp tr, respectively. This event

updates data value di (act1). It also updates write timestamp

of data item di as transaction timestamp tr (act2) and set the

status of transaction tr as WRITECOMMIT (act3).

Fig. 5. Write_Operation Event

Fig. 6. Read_Write_Abort Event

Fig. 7. Write_Abort Event

4.6 Read_Write_Abort Event

The abortion of any read and write operation will occur if

transaction does not succeed either in reading or writing on

data item. It will be possible if write timestamp of data item

will greater than transaction’s timestamp. The guard grd6 of

Fig. 6. Indicates that write timestamp of data item di is greater

than transaction’s timestamp tr. Therefore, transaction any of

its kind either update transaction or read only transaction will

be aborted.

4.7 Write_Abort Event

The event Write_Abort is given in Fig. 7. The write operation

will also be aborted if required data items are already been

read by some younger transaction. The guard grd6 indicates

that data item di is already read by younger transaction

because read timestamp of data item di is greater than

transaction’s timestamp tr (grd6). The action act1 changes the

status of transaction tr as ABORT.

5. CONCLUSION
The concurrency control can be provided either through locks

or timestamps. The timestamp based approaches are

categorized as basic timestamp mechanism, conservative

approach and multiversion approach. Formal modeling of

multiversion concurrency control system using Event-B can

be found in [9]. In this paper, we have done formal modeling

of basic timestamp mechanism using Event-B. The basic

timestamp mechanism ensures that execution of transaction is

equivalent to serial execution in timestamp order. In this

approach, a transaction will perform read and write operation

on any data item if that data item had been last written by an

older transaction. For ensuring correctness of system, it is

required to verify every execution path of model.

Formal methods are mathematical techniques which provide

systematic approach for development and reasoning about

complex system. They provide proof based approach to verify

the correctness of model. We have considered Event-B formal

method for development of our model. We have done

verification by preserving invariants. Invariants are

constraints on machine variables. During execution of model

these invariants should not be violated. Invariant preservation

is ensured by discharging proof obligations generated by

systems. We have used Rodin platform for formalizing our

model. Total 43 proof obligations are generated by system out

of which 29 proofs are discharged by the prover of Rodin tool

automatically while 14 proofs are discharged interactively.

While discharging the proof obligations, it gives clear

reasoning about the model. In future, we are planning to

formalize conservative approach of timestamp in distributed

environment.

6. REFERENCES
[1] Butler, M. and Maamria, I.. Practical theory extension in

Event-B. In Zhiming Liu, Jim Woodcock, and Huibiao

Zhu, editors, Theories of Programming and Formal

Methods, volume 8051 of Lecture Notes in Computer

Science, pages 6781. Springer, 2013.

[2] Hallerstede, S. and Leuschel, M.: Experiments in

program verification using Event-B. Formal Aspects of

Computing, 24: pp. 97125, (2012).

[3] Yadav D. and Butler M.: Application of Event B to

Global Causal Ordering for Fault Tolerant Transactions.

In: Proc. of REFT 2005, Newcastle upon Tyne, pp. 93-

103, (2005).

[4] Butler, M.and Yadav D.: An incremental development of

the mondex system in Event-B. Formal Aspects of

Computing, 20(1):61-77, (2008).

Write_Abort ≙

Any tr, di Where

grd1: tr : transaction

grd2: tr : activetrans

grd3: di: DATAITEM

grd4: di: transdataitem(tr)

grd5: transstatus(tr) = ACTIVE

grd6: readtsp(di)> transactiontsp(tr)

Then

act1: transstatus(tr) ≔ ABORT

act2: activetrans ≔ activetrans∖{tr}

End

Read_Write_Abort ≙

Any tr, di Where

grd1: tr : transaction

grd2: tr : activetrans

grd3: di: DATAITEM

grd4: di: transdataitem(tr)

grd5: transstatus(tr) = ACTIVE

grd6: writetsp(di)> transactiontsp(tr)

Then

act1: transstatus(tr) ≔ ABORT

act2: activetrans ≔ activetrans∖{tr}

End

Write_Operation ≙

Any tr, di, newvv Where

grd1: tr : transaction

grd2: tr : activetrans

grd3: newvv: DATAVALUE

grd4: di: DATAITEM

grd5: di: transdataitem(tr)

grd6: transstatus(tr) = ACTIVE

grd7: writetsp(di)< transactiontsp(tr)

grd8: readtsp(di)< transactiontsp(tr)

Then

act1: dvalue(di) ≔ newvv

act2: writetsp(di) ≔ transactiontsp(tr)

act3: transstatus(tr) ≔ WRITECOMMIT

End

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.8, August 2015

11

[5] Banach R.: Retrenchment for Event-B: UseCase-wise

development and Rodin integration. Formal Aspects of

Computing, 23, pp. 113131, (2011).

[6] Ozsu M. and Valduriez P.: Principles of Distributed

Database Systems Pearson Education (Singapore)

Pte.Ltd. India (2004).

[7] Bernstein, P. and Goodman, N.: Timestamp Based

Algorithms for Concurrency Control in Distributed

Database Systems. In: Proc. of 6th Int. Conf. on Very

Large Databases (1980).

[8] Bernstein, P., Hadzilacos, V. and Goodman, N.:

Concurrency Control and Recovery in Database

Systems. Addison-Wesley (1987).

[9] Suryavanshi, R. and Yadav, D. “Modeling of

Multiversion Concurrency Control System Using Event-

B” in Federated Conference on Computer Science and

Information systems (FedCSIS), indexed and published

by IEEE, 9-12 September, Wroclaw, Poland, 2012.

[10] Suryavanshi, R. and Yadav, D. :Formal Development of

Byzantine Immune Total Order Broadcast System using

Event-B. In: ICDEM 2010, F. Andres and R. Kannan

(eds.) LNCS, Vol. 6411, Springer, pp.317-324, (2010).

[11] Yadav, D. and Butler, M.: Formal Development of a

Total Order Broadcast for Distributed Transactions

Using Event-B. Lecture Notes in Computer Science

5454, springer-Verlag Berlin Heidelberg, pp.152-176,

(2009).

[12] Basin, D., Furst, A., Hoang, T.S., Miyazaki, K. and Sato,

N. Abstract Data Types in Event-B - An Application of

Generic Instantiation. CoRR, 2012.

[13] Metayer, C., Abrial, J R. and Voison L.: Event-B

language. RODIN deliverables 3.2,

http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf, (2005).

[14] Hallerstede, S.: On the purpose of Event-B proof

obligations. FormalAspects of Computing, 23: pp.

133150, (2011).

[15] Abrial, J-R. From Z to B and then Event-B: Assigning

Proofs to Meaningful Programs. In E.B. Johnsen and L.

Petre, editors, IFM, volume 7940 of Lecture Notes in

Computer Science, pages 115. Springer, 2013.

[16] Banach, R.: Retrenchment for Event-B: UseCase-wise

development and Rodin integration. Formal Aspects of

Computing, 23, pp. 113131, (2011).

[17] Abrial, J R.: A system development process with Event-

B and the Rodin platform. In: Lecture Notes In

Computer Science 4789, Springer, pp.1-3,(2007).

IJCATM : www.ijcaonline.org

