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ABSTRACT
Storage-as-a-Service (SaaS) offered by cloud service providers is
a paid facility that enables organizations to outsource their data to
be stored on remote servers. Thus, SaaS reduces the maintenance
cost and mitigates the burden of large local data storage at the orga-
nization’s end. However, the fact that data owners no longer physi-
cally possess their sensitive data raises new challenges to the tasks
of data confidentiality and integrity in cloud computing systems.
Many researchers have focused on the problem of provable data
possession (PDP), and proposed different schemes to audit data on
remote storage sites.
In this paper, we investigate the concept of PDP and provide an
extensive survey for different PDP schemes on a single cloud
server. Moreover, the paper discusses the design principles for var-
ious PDP constructions, highlights some limitations, and present a
comparative analysis for numerous PDP models. We classify PDP
schemes into protocols for static data, and models that support out-
sourcing of dynamic data.
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1. INTRODUCTION
Cloud computing is a distributed computational model over a large
pool of shared-virtualized computing resources (e.g., storage, pro-
cessing power, memory, applications, services, and network band-
width), where customers are provisioned and de-provisioned re-
courses as they need. The architecture of cloud computing can be
split in two: front-end and back-end. The front-end represents cloud
customers, organizations, or applications (e.g., web browsers) that
use the cloud services. The back-end is a huge network of data cen-
ters with many different applications, system programs, and data
storage systems. It is metaphorically believed that, cloud service
providers (CSPs) have almost infinite computation power and stor-
age capacity.
Cloud computing services can be categorized into: Application-
as-a-Service (AaaS), Platform-as-a-Service (PaaS), and
Infrastructure-as-a-Service (IaaS) [1]. The widely used model
of cloud computing services is the AaaS model, in which the
customers have access to the applications running on the cloud
provider’s infrastructure. Google Docs, Google Calendar, and

Zoho Writer are known examples of this model. In the PaaS model,
the customers can deploy their applications on the provider’s
infrastructure under condition that these applications are created
using tools supported by the provider. The cloud service provider
(CSP) hosts a set of software and development tools on its servers
to be used by the developers to create their own applications.
Google Apps is one of the best known PaaS models. IaaS model
enables customers to rent and use the provider’s resources (storage,
processing, and network). Hence, the customers can deploy any
applications including operating systems.
The cloud computing architecture can be deployed under different
models [1]:

• Public cloud. The infrastructure of the CSP is publicly acces-
sible by general customers and organizations in exchange for
pre-specified fees according to the usage of the CSP’s services.

• Private cloud. The cloud infrastructure is dedicated to an or-
ganization which may manage the infrastructure or leave this
management to a third party.

• Hybrid cloud. The cloud infrastructure is composed of two or
more clouds (private or public). The organizations provide and
handle some internal and external resources. For example, an
organization can use a public cloud service as Amazon Elastic
Compute Cloud (Amazon EC2) to perform the general compu-
tation, while the data files are stored within the organization’s
local data center in a private cloud.

• Community cloud. The cloud infrastructure is available for
shared use of several organizations supporting a specific com-
munity and having shared concerns (e.g., mission, security re-
quirements, and compliance considerations)

The considerable attention of cloud computing paradigm is due to
a number of key advantages: cost effectiveness, low management
overhead, immediate access to a wide range of applications, flex-
ibility to scale up/down information technology (IT) capacity, and
mobility where customers can access information wherever they
are, rather than having to remain at their desks.

1.1 Outsourcing Data Storage
In our current digital world, various organizations produce a large
amount of sensitive data including personal information, electronic
health records, and financial data. The amount of digital data is
increasing at a staggering rate; doubling almost every year and a
half [2], and outpacing the storage ability of many organizations.
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This data often needs to be stored at multiple locations for a long
time due to operational purposes and regulatory compliance. The
local management of such huge amount of data is problematic and
costly due to the requirements of high storage capacity and quali-
fied personnel. While there is a steady drop in the cost of storage
hardware, the management of storage has become more complex
and represents approximately 75% of the total ownership cost [2].
Storage-as-a-Service (sort of IaaS) offered by CSPs is an emerg-
ing solution to mitigate the burden of large local data storage and
reduce the maintenance cost by means of outsourcing data storage.
Through outsourcing data storage scenario, organizations delegate
the storage and management of their data to a CSP in exchange
for pre-specified fees metered in GB/month. Such outsourcing of
data storage enables organizations to store more data on remote
servers than on private computer systems. In addition, some orga-
nizations may create large data files that must be archived for many
years but are rarely accessed, and thus there is no need to store such
files on the local storage of the organizations. More importantly, the
CSP often provides better disaster recovery by replicating the data
on multiple servers across multiple data centers achieving a higher
level of availability. Therefore, many authorized users are allowed
to access the remotely stored data from different geographic loca-
tions making it more convenient for them. A relatively recent sur-
vey indicates that IT outsourcing has grown by a staggering 79%
as organizations seek to focus more on their core competencies and
reduce costs [3].

1.2 Remote Data Storage Challenges
The fact that data owners no longer physically possess their sensi-
tive data raises new challenges to the tasks of data confidentiality
and integrity in cloud computing systems. Unauthorized access and
misuse of customers’ confidential data are serious concerns regard-
ing data outsourcing; hence, it is of significant importance to be
aware of data administrators (CSPs) and their extend of data ac-
cess right. In some practical applications, data confidentiality is not
only a privacy concern, but also a juristic issue. For example, in
e-Health applications inside the USA the usage and exposure of
protected health information should meet the policies admitted by
Health Insurance Portability and Accountability Act (HIPAA) [4],
and thus keeping the data private on the remote storage servers is
not just an option, but a demand. The confidentiality feature can be
guaranteed by the owner via encrypting the data before outsourcing
to remote servers. As such, it is a crucial demand of customers to
have a strong evidence that the cloud servers still possess their data
and it is not being tampered with or partially deleted over time, es-
pecially because the internal operation details of the CSP may not
be known to cloud customers.
The completeness and correctness of customers’ data in the cloud
may be at risk due to the following reasons. First, the CSP – whose
goal is to make a profit and maintain a reputation – has an incen-
tive to hide data loss (due to hardware failure, management errors,
various attacks) or reclaim storage by discarding data that has not
been or is rarely accessed. Second, a dishonest CSP might delete
some of the data or might not store all data in a high performance
storage required by the contract with certain customers, i.e., place
it on low cost (and hence slow) media. Third, the cloud infrastruc-
tures are subject to a wide range of internal and external security
threats. Incidences of security breaches of cloud services surface
from time to time [5, 6]. In short, although outsourcing data to the
cloud is attractive from the view point of cost and complexity of
long-term large-scale data storage, it does not offer sufficient guar-
antee on data integrity. This problem, if not properly handled, may

hinder the successful deployment and wide acceptance of the cloud
paradigm.
Once customers’ data has been outsourced to remote servers, effi-
cient verification of the completeness and correctness of the out-
sourced data becomes a formidable challenge. Traditional crypto-
graphic primitives for data integrity and availability based on hash-
ing and signature schemes are not applicable to outsourced data
without having a local copy. It is impractical for the owners to
download all stored data to validate its integrity; this would re-
quire an expensive I/O operations and immense communication
overheads across the network. Therefore, efficient techniques are
needed to verify the integrity of outsourced data with reduced com-
munication, computation, and storage overheads. Consequently,
many researchers have focused on the problem of provable data
possession (PDP), and proposed different schemes to audit the data
on remote storage sites.
This paper investigates the concept of PDP over a single remote
server, discusses the design principles of different PDP protocols,
highlights some limitations, and present a comparative study for
numerous PDP schemes. We classify the PDP schemes according
to the nature of the outsourced data: static data and dynamic data.

Paper organization. The remainder of the paper is organized as
follow. The PDP concept is presented in Section 2. Section 3 pro-
vides different PDP schemes for single data copy. The comparative
analysis is shown in Section 4. Concluding remarks are given in
Section 5.

2. PROVABLE DATA POSSESSION
In this section, we describe the concept of provable data posses-
sion (PDP) and provide the dimensions of our classification of PDP
schemes

2.1 Concept
PDP is a technique that allows an entity to prove that the data is
in its possession for validating data integrity over remote servers.
In a typical PDP model, the data owner generates some meta-
data/information for a data file to be used later for verification pur-
poses through a challenge-response protocol with the remote/cloud
server. The owner sends the file to be stored on a remote server
which may be untrusted, and deletes the local copy of the file. As
a proof that the server is still possessing the data file in its original
form, it needs to correctly compute a response to a challenge vec-
tor sent from a verifier – who can be the original data owner or a
trusted entity that shares some information with the owner. Shortly,
PDP schemes allow a verifier to efficiently, periodically, and se-
curely validate that a remote server – which supposedly stores the
owner’s potentially very large amount of data – is actually storing
the data intact.
The problem of data integrity over remote servers has been ad-
dressed for many years and there is a simple solution to tackle this
problem as follows. The data owner computes a message authen-
tication code (MAC) of the whole file before outsourcing to a re-
mote server. The owner keeps only the computed MAC on his local
storage, sends the file to the remote server, and deletes the local
copy of the file. Later, whenever a verifier needs to check the data
integrity, he sends a request to retrieve the file from the archive
service provider, re-computes the MAC of the whole file, and com-
pares the re-computed MAC with the previously stored value. Al-
ternatively, instead of computing and storing the MAC of the whole
file, the data owner divides the file F into blocks {b1, b2, . . . , bm},
computes a MAC σj for each block bj : σj = MACsk(j||bj)1≤j≤m,

2



International Journal of Computer Applications (0975 - 8887)
Volume 123 - No.9, August 2015

sends both the data file F and the MACs {σj}1≤j≤m to the re-
mote/cloud server, deletes the local copy of the file, and stores only
the secret key sk. During the verification process, the verifier re-
quests for a set of randomly selected blocks and their correspond-
ing MACs, re-computes the MAC of each retrieved block using
sk, and compares the re-computed MACs with the received val-
ues from the remote server [7]. The rationale behind the second
approach is that checking part of the file is much easier than the
whole of it. However both approaches suffer from a severe draw-
back; the communication complexity is linear with the queried data
size which is impractical especially when the available bandwidth
is limited.

2.2 Our Classification
In this sub-section we classify PDP schemes according to the nature
of outsourced data. Some PDP models focus on archived and ware-
housed data, which is essential in many applications such as digi-
tal libraries and astronomical/medical /scientific/legal repositories.
Such data are subject to infrequent change, so they are treated as
static. Other PDP protocols handle dynamic behavior of data. Each
PDP scheme has its own design principles: some schemes are based
on the RSA model, some are based on bilinear pairing, some are
based on homomorphic verifiable tags, some are based on hashing
techniques, and others are based on authenticated data structures.
Figure 1 outlines our classification for different PDP models.

Fig. 1: Classification of PDP schemes.

3. PROVABLE SINGLE-COPY DATA POSSESSION
In this section, we review different PDP schemes for single data
copy. We provide the rationale behind these schemes, their features
and limitations. We start with PDP schemes for static data, then we
direct our survey to models that deal with dynamic data.

3.1 Provable Static Data Possession
3.1.1 RSA-Based PDP Schemes. MAC-based approaches for re-
mote data integrity are associated with high communication over-
head. Deswarte et al. [8] thought of a technique to reduce the com-
munication cost by using two functions f and H ′, where H ′ is
a one-way function and f is another function. The relation be-
tween H ′ and f is that f(C,H ′(File)) = h(C||File), where h

is any secure hash function and C is a random challenge number
sent from the verifier to the remote server. Thus, the data owner
has to compute H ′(File) and store it on his local storage. To au-
dit the file, the verifier generates a random challenge C, computes
V = f(C,H ′(File)), and sends C to the remote server. Upon re-
ceiving the challenge C, the server computes S = h(C||File) and
sends the response S to the verifier. To validate the file integrity, the
verifier checks V ?

= S. At least one of the two functions f and H ′
must be kept secret because if both were public, it would be easy
for a malicious server to compute and store only H ′(File) that is
not the entire file, and then dynamically responds with a valid value
f(C,H ′(File)) that is not the expected one h(C||File).
Unfortunately, Deswarte et al. [8] have not found such functions f ,
H ′, and h satisfying the desired verification rule. To workaround
this problem, a finite number Ñ of random challenges are generated
offline for the file to be checked, and the corresponding responses
h(Ci||File)1≤i≤Ñ are pre-computed and stored on the verifier lo-
cal storage. To audit the file, one of the Ñ challenges is sent to
the remote server and the received response is compared with the
pre-computed one (previously stored on the verifier side). However,
this solution limits the number of times a particular data file can be
checked by the number of random challenges Ñ . Once all random
challenges {Ci}1≤i≤Ñ are consumed, the verifier has to retrieve the
data file from the storage server to compute new responses, but this
is unworkable.
Deswarte et al. [8] provided another protocol to overcome the prob-
lem of limited number of audits per file. In this protocol the data file
is represented as an integer d. Figure 2 illustrates the scheme pre-
sented in [8].

Data owner:

− Represents the data file as an integer d
− Generates RSA modulus N = pq (p & q are prime numbers)
− Pre-computes and stores M = ad mod N (a ∈R ZN )

− Sends the file value d to the remote server

Challenge Response

Verifier Remote Server

1. Picks r ∈R ZN
2. Computes a challenge A = ar mod N

A−−−−−−−→
3. Computes a response:

. S = Ad mod N
a S←−−−−−−−
4. Computes V = Mr mod N

5. Checks V ?
= S

Fig. 2: The PDP protocol by Deswarte et al. [8].

Remark. The main limitation in the protocol of Deswarte et al. [8]
is the computation overhead on the server side. In each verification,
the remote server has to do the exponentiation over the entire file.
Thus, if we are dealing with huge files, e.g., in order of Terabytes
(as most practical applications require) this exponentiation will be
heavy. The data owner can reduce the exponent part in the compu-
tation M = ad mod N by utilizing the Fermat-Euler theorem [9],
where ad ≡ admodφ(N) mod N and φ(N) = (p − 1)(q − 1) is
the Euler’s totient function. The remote server cannot use this trick
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because φ(N) is not known in public.

Filho et al. [10] proposed a scheme to verify data integrity using
the RSA-based homomorphic hash function. A function Ĥ is ho-
momorphic if, given two operations + and × , we have Ĥ(d+ d′)

= Ĥ(d)× Ĥ(d′). The protocol in [10] is illustrated in Figure 3.

Data owner:

− Generates RSA modulus N = pq (p & q are prime numbers)
− Computes φ(N) = (p− 1)(q − 1)

− Pre-computes and stores h̄(d) = d mod φ(N) (d is the data file)
− Sends the data file d to the remote server

Challenge Response

Verifier Remote Server

1. Picks r ∈R ZN
r−−−−−−−→

2. Computes a response:
. S = Ĥ(d) = rd mod N

a S←−−−−−−−
3. Computes V = rh̄(d) mod N

4. Checks V ?
= S

Fig. 3: The PDP protocol by Filho et al. [10].

Remark. The server’s response S = Ĥ(d) is a homomorphic func-
tion; Ĥ(d+ d′) ≡ rd+d′ ≡ rdrd′ ≡ Ĥ(d)Ĥ(d′) mod N . To find a
collision for this hash function, one has to find two messages d, d′

such that rd ≡ rd
′
, i.e., rd−d

′ ≡ 1 mod N . Thus, d − d′ must
be multiple of φ(N). Finding such two messages d, d′ is believed
to be difficult since the factorization of N is unknown. The lim-
itation of the protocol presented in [10] is similar to that of the
protocol in [8]: the archive service provider has to exponentiate the
entire data file, which is a heavy computation overhead especially
for large files.

To circumvent the problem of exponentiating the entire file, Sebé
et al. [11] presented a scheme to remotely verify data integrity by
first fragmenting the file into blocks, fingerprinting each file block,
and then using an RSA-based hash function on the blocks. Thus, the
data file F is divided into a set ofm blocks: F = {b1, b2, . . . , bm},
where m fingerprints {Mj}1≤j≤m are generated for the file and
stored on the verifier local storage. Their scheme does not require
the exponentiation of the entire file. Figure 4 demonstrates the pro-
tocol of Sebé et al. [11].

Remark. Although the protocol presented by Sebé et al. [11] does
not require exponentiation of the entire file, a local copy of the fin-
gerprints – whose size is linear in the number of file blocks – must
be stored on the verifier side. The verifier has to store {Mj}1≤j≤m,
each of size |N | bits consuming m|N | bits from the verifier lo-
cal storage, which may impede the verification process when using
small devices like PDAs or cell phones. Moreover, this protocol
supports only private verifiability, i.e., only the data owner can chal-
lenge the remote server and validate the data possession. If there is
a dispute regarding data integrity, we cannot resort to a trusted third
party auditor to resolve such a dispute.

Data owner:

− Generates RSA modulus N = pq (p & q are prime numbers)
− Computes φ(N) = (p− 1)(q − 1)

− Divides the data file F into m blocks: F = {b1, b2, . . . , bm}
− Pre-computes and stores Mj = bj mod φ(N) (1 ≤ j ≤m)

− Sends the data file F to the remote server

Challenge Response

Verifier Remote Server

1. Picks r ∈R ZN
2. Generates l(≤m) random values {cj}1≤j≤l

a
r,{cj}1≤j≤l−−−−−−−−−−−−−−→

a 3. Computes a =

l∑
j=1

cj · bj

a 4. Computes S = ra mod N

a S←−−−−−−−−−−−−−−

5. Computes a′ =
l∑

j=1

cj ·Mj mod φ(N)

6. Computes V = ra
′

mod N

7. Checks V ?
= S

Fig. 4: The PDP protocol by Sebé et al. [11].

3.1.2 Data Storage Commitment Schemes. Golle et al. [12] pro-
vided a scheme to verify data storage commitment, a concept that
is weaker than integrity. They investigated ”storage-enforcing com-
mitment scheme”. Through their scheme a storage server demon-
strates that it is making use of storage space as large as the client’s
data, but not necessarily the same exact data. The storage server
does not directly prove that it is storing a file F , but proves that it
has committed sufficient resources to do so. Their scheme is based
on n-Power Computational Diffie-Hellman (n-PCDH) assumption:
for a group Zp (p is a prime number) with a generator g, there is no
known probabilistic polynomial time algorithm A that can compute
gx
n

given gx, gx
2
, . . . , gx

n−1
with non-negligible probability. Fig-

ure 5 illustrates the scheme of Golle et al. [12].

Remark. In [12] each file block bj ∈ Zp can be represented by
dlog2 pe bits, and thus the total number of bits to store the file
F = mdlog2 pe bits. For the storage server to cheat by stor-
ing all the possible values of fk (i.e., m + 1 values), it needs
(m + 1)dlog2 pe bits which is slightly larger than the size of
the original file. The guarantee provided by the protocol in [12]
is weaker than data integrity since it only ensures that the server
is storing something at least as large as the original data file but
not necessarily the file itself. In addition, the verifier’s public key is
about twice as large as the file.

3.1.3 Privacy-Preserving PDP Schemes. Shah et al. [13, 14]
presented privacy-preserving PDP protocols. Using their schemes,
an external third party auditor (TPA) can verify the integrity of
files stored by a remote server without knowing any of the file
contents. The data owner first encrypts the file, then sends both
the encrypted file along with the encryption key to the remote
server. Moreover, the data owner sends the encrypted file along
with a key-commitment that fixes a value for the key without
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Setup

− File F = {b1, b2, . . . , bm}, bj ∈ Zp
− Let n = 2m+ 1

− Secret key sk = x ∈R Zp
− Public key pk = (gx, gx

2
, . . . , gx

n
) = (g1, g2, . . . , gn)

− Data owner computes and stores f0 =

m∏
j=1

g
bj
j mod p

Challenge Response

Verifier Remote Server
1. Picks a random k ∈ [0,m]

a k−−−−−−−−−−−−−→

a 2. Computes fk =

m∏
j=1

g
bj
j+k

a
fk←−−−−−−−−−−−−−−

3. Checks fx
k

0
?
= fk

Fig. 5: The PDP protocol by Golle et al. [12].

revealing the key to the TPA. The primary purposes of the schemes
presented in [13,14] are to ensure that the remote server is correctly
possessing the client’s data along with the encryption key, and to
prevent any information leakage to the TPA which is responsible
for the auditing task. Thus, clients – especially with constrained
computing resources and capabilities – can resort to external audit
party to check the integrity of outsourced data, and this third party
auditing process should bring in no new vulnerabilities towards the
privacy of client’s data. In addition to the auditing task of the TPA,
it has another primary task which is extraction of digital contents.
For the auditing task, the TPA interacts with the remote server
to check that the stored data is intact. For the extraction task, the
TPA interacts with both the remote server and the data owner to
first check that the data is intact then delivers it to the owner. The
protocols presented by Shah et al. [13, 14] are illustrated in Figure
6.

Remark. The protocols presented in [13, 14] achieve privacy-
preserving towards third party auditing process and extract digital
contents from remote servers, but have some limitations:

• Limited number of verifications for a particular data item (must
be fixed beforehand).

• Storage overhead on the TPA; it has to store Ñ hash values for
each file to be audited.

• Lack of support for stateless verification; the TPA has to update
its state (the list L) between audits to prevent using the same
random number or the same HMAC twice.

• High communication complexity to retrieveEK(F ) if the TPA
wants to regenerate a new list of hash values to achieve unlim-
ited number of audits.

Wang et al. [15] designed a lightweight TPA scheme using ho-
momorphic linear authenticators (HLA). The main idea of their
scheme is to integrate HLA with random masking technique to au-
dit the outsourced data while keeping their privacy. In the scheme
of [15], the TPA sends a challenge to check data integrity and the
CSP computes a response µ to that challenge. Before sending the
response µ to the TPA, the CSP blinds µ using a random mask, i.e.,

Setup

− Data owner sends a keyK and the encrypted fileEK(F ) to the remote
server

− Data owner sends a key-commitment value gK and the encrypted file
EK(F ) to the TPA (g is a generator for Zp)

− The TPA generates a list L of random values and HMACs: L =

{(Ri, H̃i)}1≤i≤Ñ , H̃i = HMAC(Ri, EK(F )), and Ri is a random
number.

− TPA keeps {L,h(EK(F )), gK} and can discard EK(F ) (h is a se-
cure hash function)

TPA Remote Server
Checking Data Integrity
1. Picks any (Ri, H̃i) from L and updates L = L\{(Ri, H̃i)}
a

Ri−−−−−−−−−−−−−−−→
a 2. Computes H̃s=HMAC(Ri, EK(F ))

a H̃s←−−−−−−−−−−−−−−−
3. Checks H̃i

?
= H̃s

Checking Key Integrit
1. Generates β ∈R Zp

a
gβ−−−−−−−−−−−−−−→

a 2. Computes Ws = (gβ)K

a Ws←−−−−−−−−−−−−−−−
3. Checks (gK)β

?
= (Ws)

Data Extraction

a
Ds=EK(F )←−−−−−−−−−−−−−−−

• Checks the hash of its local cached copy:

.. h(EK(F ))
?
= h(Ds). If valid, sends EK(F ) to the owner

Key Extraction
• Assume that the owner and the server agree on a shared random secret X

a
K+X, gX←−−−−−−−−−−−−−

• Checks gK+X ?
= gK · gX . If valid, sends K +X to the owner

• Owner gets K = (K +X)−X

Fig. 6: The PDP protocols by Shah et al. [13, 14].

µ′ = µ + r.h((ux)r), where µ′ is the blinded blocks aggregation,
r is a random mask, u is a public key, x is a private key, and h is a
hash function.

3.1.4 PDP in Database Context. In the database outsourcing sce-
nario, the database owner stores data at a storage service provider
and the database users send queries to the service provider to
retrieve some tuples/records that match the issued query. Data
integrity is an imperative concern in the database outsourcing
paradigm; when a user receives a query result from the service
provider, it is crucial to verify that the received tuples are not be-
ing tampered with by a malicious service provider. Mykletun et
al. [16] investigated the notion of signature aggregation to vali-
date the integrity of the query result. Signature aggregation en-
ables bandwidth- and computation-efficient integrity verification
of query replies. In the scheme presented in [16], each database
record is signed before outsourcing the database to a remote ser-
vice provider.
Mykletun et al. [16] provided two aggregation mechanisms: one is
based on RSA [17] and the other is based on BLS (Boneh-Lynn-
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Shacham) signature [18]. For the scheme based on the RSA signa-
ture, each record in the database is signed as: σj = h(bj)

d mod N ,
where h is a one-way hash function, bj is the data record, d is the
RSA private key, andN is the RSA modulus. A user issues a query
to be executed over the outsourced database, the server processes
the query and computes an aggregated signature σ =

∑t
j=1 σj

mod N , where t is the number of records in the query result. The
server sends the query result along with the aggregated signature
to the user. To verify the integrity of the received records, the user
checks σe ?

=
∏t
j=1 σj mod N , where e is the RSA public key.

The second scheme presented by Mykletun et al. [16], which is
based on the BLS signature [18] is similar to the first scheme but
the record signature σj = h(bj)

x, where x ∈R Zp is a secret
key. To verify the integrity of the received records, the user checks
ê(σ, g)

?
= ê(

∏t
j=1 h(bj), y), where g is a generator of the group

Zp, y = gx(public key), and ê is a computable bilinear map.
Correctness and Completeness are imperative concerns in the
database outsourcing paradigm. Completeness means that the ser-
vice provider should send all records that satisfy the query criteria
not just subset of them. The completeness requirement was not con-
sidered by the schemes presented in [16], and it has been addressed
by other researchers (see for example [3, 19]).

Remark. The schemes provided in [16] depend on the retrieved
records of the query result to verify the integrity of the outsourced
database. On the other hand, efficient PDP schemes require block-
less verification, i.e., the verifier has to have the ability to validate
data integrity even though he neither possesses nor retrieves any of
the file blocks. Blockless verification is a main concern to minimize
the required communication cost over the network.

3.1.5 PDP Schemes Based on Homomorphic Verifiable Tags.
Ateniese et al. [20] presented a model to overcome some of the
limitations of other PDP protocols: limited number of audits per file
determined by fixed challenges that must be specified in advance,
expensive server computation by doing the exponentiation over the
entire file, storage overhead on the verifier side by keeping some
metadata to be used later in the auditing task, high communication
complexity, and lack of support for blockless verification. Ateniese
et al. [20] provided a PDP model in which the data owner fragments
the file F into blocks {b1, b2, . . . , bm} and generates metadata (a
tag) for each block to be used for verification. The file is then sent
to be stored on a remote/cloud server, which may be untrusted and
the data owner may delete the local copy of the file. The remote
server provides a proof that the data has not been tampered with
or partially deleted by responding to challenges sent from the veri-
fier. The scheme presented in [20] provides probabilistic guarantee
of data possession, where the verifier checks a random subset of
stored file blocks with each challenge (spot checking).
Homomorphic verifiable tags (HVTs)/homomorphic linear authen-
ticators (HLAs) are the basic building blocks of the PDP scheme
presented in [20]. Briefly, the HVTs/HLAs are unforgeable veri-
fication metadata constructed from the file blocks in such a way
that the verifier can be convinced that a linear combination of the
file blocks is accurately computed by verifying only the aggre-
gated tag/authenticator. In the work of [20], the authors differen-
tiate between the concept of public verifiability and private veri-
fiability. In public verifiability anyone – not necessarily the data
owner – who knows the owner’s public key can challenge the re-
mote server and verify that the server is still possessing the owner’s
files. On the other side, private verifiability allows only the orig-
inal owner to perform the auditing task. Two main PDP schemes
are presented in [20]: sampling PDP (S-PDP) and efficient PDP

(E-PDP) schemes. In fact, there is a slight difference between these
two models, but the E-PDP scheme provides a weaker guarantee of
data possession. The E-PDP protocol guarantees only the posses-
sion of the sum of file blocks and not necessarily the possession of
each one of the blocks being challenged. Both protocols presented
in [20] are illustrated in Figure 7.

I. S-PDP scheme
Setup

− N = pq is the RSA modulus (p & q are prime numbers)
− g is a generator of QRN (the set of quadratic residues modulo N)
− Public key pk = (N, g, e), secret key sk = (d, v), v ∈R ZN , and
ed ≡ 1 mod (p− 1)(q − 1)

− π is a pseudo-random permutation, f is a pseudo-random function, H
is a hash-and-encode function (H : {0, 1}∗ → QRN ), and h is a
cryptographic hash function.

− File F = {b1, b2, . . . , bm}
− Owner generates a tag Tj for each block bj : Tj = (H(v||j) · gbj )d

mod N
− Owner sends F = {bj}1≤j≤m and {Tj}1≤j≤m to the remote server

Challenge Response
Verifier Remote Server
1. Picks two keys k1(key for π), k2(key for f ),
aac(# of blocks to be challenged),
aaand gs = gs mod N (s ∈R ZN )

a
c, k1, k2, gs−−−−−−−−−−−−−−−→

a 2. Computes challenged block indices:
a {ji} = πk1 (i)1≤i≤c
a 3. Computes random values:
a {ai} = fk2 (i)1≤i≤c

a 4. Computes T =

c∏
i=1

T
ai
ji

mod N

a 5. Computes ρ = h(g

∑c
i=1 bji ·ai

s mod N)

a
T, ρ←−−−−−−−−−−−−−−−

6. Computes {ji} = πk1 (i)1≤i≤c and {ai} = fk2 (i)1≤i≤c
7. Computes τ = Te∏c

i=1H(v||ji)ai

8. Checks h(τs mod N)
?
= ρ

II. E-PDP scheme
The only difference between the E-PDP and the S-PDP is that :
{ai}1≤i≤c = 1, and thus

− Step 4 : T =

c∏
i=1

Tji mod N

− Step 5 : ρ = H(g

∑c
i=1 bji

s mod N)

− Step 7 : τ = Te∏c
i=1H(v||ji)

Fig. 7: The S-PDP and E-PDP protocols by Ateniese et al. [20].

Ateniese et al. [21] showed that the HLAs can be constructed from
homomorphic identification protocols. They provided a ”compiler-
like” transformation to build HLAs from homomorphic identifica-
tion protocols and showed how to turn the HLA into a PDP scheme.
As a concrete example, they applied their transformation to a vari-
ant of an identification protocol proposed by Shoup [22] yielding a
factoring-based PDP scheme.
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Remark.The schemes of Ateniese et al. [20] have resolved many
constraints of other PDP protocols. However, their schemes are
based on RSA, which make the HVTs relatively long; each file
block has an HVT in order of |N | bits. Thus, to achieve 128-bit se-
curity level, the generated tag should be of size 3072 bits. Shacham
and Waters [23] presented an attack against the E-PDP scheme,
which enables a malicious server to cheat with non-negligible prob-
ability requiring no more storage than an honest server to store the
file.

3.2 Provable Dynamic Data Possession
One of the core design principles of outsourcing data is to provide
dynamic scalability of data for various applications. In this section
we describe different provable single-copy dynamic data posses-
sion (PSDDP) schemes, where the data owner can issue requests to
update and scale the outsourced data.

3.2.1 Hash-Based PSDDP Schemes. Ateniese et al. [24] pro-
posed a dynamic version of the PDP scheme based on crypto-
graphic hash function and symmetric key encryption. Their scheme
is efficient but allows only a fixed number of challenges due to the
fact that through the scheme setup they come up with all future
challenges and store pre-computed responses as tokens. These to-
kens can be stored either at the verifier side in a plain form or at
the server side in an encrypted form. Block insertion in [24] cannot
explicitly be supported (append operation is supported). Figure 8
summarizes the scheme presented in [24].

3.2.2 PSDDP Schemes Based on Authenticated Data Structures.
Erway et al. [25] constructed a PSDDP scheme based on the PDP
model of [20] to support provable updates of stored data files using
rank-based authenticated skip lists. Their protocol supports block
insertion by eliminating the index information in the tag compu-
tation of [20]. The purpose of using the rank-based authenticated
skip list in [25] is to authenticate the tag information of the blocks
to be updated or challenged.
In the PSDDP scheme of [25], the File F is fragmented into m
blocks {b1, b2, . . . , bm}. A tag T (bj) of block bj is computed as
T (bj) = gbj modN (N is the RSA modulus and g is an element of
high order in Z∗N ). The block representation T (bj) is stored at the
jth bottom-level node of the authenticated skip list and the block
itself is stored elsewhere by the server. The tags protect the integrity
of file blocks, while the authenticated list ensures the security and
integrity of tags.
During the challenge phase, the client requests the server to prove
the integrity of randomly selected c blocks {bji}1≤j1,...,jc≤m.
The server sends the tags {T (bji)}1≤j1,...,jc≤m along with their
search/verification paths. The server also sends a combined block
M =

∑c
i=1 ai.bji , where {ai}1≤i≤c are random values sent

by the client as part of the challenge. The owner verifies the
search/verification paths of the block tags using metadata Mc,
which is the label of the start node. Besides, the owner computes
T =

∏c
i=1 T (bji)ai mod N . Data integrity is valid only if the

search paths are verified and T = gM mod N .
The authenticated skip list is used to modify, insert, and delete the
block tags achieving the dynamic behavior of the data file. Nodes of
skip list along the search/verification path – from the start node to
the node associated with the block to be updated – are only affected
by the dynamic operations of file blocks.
In their work, Erway et al. [25] presented a variant of the PSDDP
scheme using RSA trees instead of rank-based authenticated lists.
Wang et al. [26] used Merkle hash trees [27] (instead of skip lists)

Setup

− Data file F is a set of blocks {b1, b2, . . . , bm}
− g is a pseudo-random permutation, f is a pseudo-random function, and
h is a cryptographic hash function. f is used to generate keys for g and
to generate random numbers.

− EK andE−1
K are encryption and decryption algorithms under a keyK

− Two master keys W and Z
− Data owner generates t random challenges and their corresponding re-

sponses/tokens {νi}1≤i≤t as follows.
- for i = 1 to t do
—- 1. Generate ki = fW (i) and ci = fZ(i)

———/* r is # of blocks per token */
—- 2. νi = h(ci, 1, bgki (1))⊕ · · · ⊕ h(ci, r, bgki (r)

)

—- 3. ν ′i = Ek(ctr, i, νi) /* ctr is an integer counter */
− Owner sends the file F = {bj}1≤j≤m and {ν ′i}1≤i≤t to the server.

Challenge Response
Data owner Remote Server
Begin challenge i
—1. Generates ki = fW (i) and ci = fZ(i)

-
ki,ci−−−−−−−−−−−−−−−−→

- 2. z = h(ci, 1, bgki (1))⊕· · ·⊕h(ci, r, bgki (r)
)

-
z,ν′i←−−−−−−−−−−−−−−−

—3. Computes ν = E−1
K (ν ′i)

—4. Checks ν ?
= (ctr, i, z)

End challenge i
Dynamic Operations
Modify /* Assume that block bj is to be updated to b′j */
Data owner Remote Server

-
1. {ν′i}1≤i≤t←−−−−−−−−−−−−−−−−−−−−−

-2. ctr = ctr + 1

-3. for i = 1 to t do
— 3.1 z′i = E−1

K (ν ′i)
——-/* if decryption fails, exit*/
——-/* if z′i is not prefixed by (ctr-1) and i, exit */
— 3.2 extracts νi from z′i

— 3.3 computes ki = fW (i) and ci = fZ(i)

—/* update all tokens even if they do not include the block to be updated */

— 3.4 for l = 1 to r do
———–if (gki (l) == j) then
—————νi = νi ⊕ h(ci, l, bj)⊕ h(ci, l, b

′
j)

— 3.5 ν ′i = Ek(ctr, i, νi)

-
j, b′j , {ν

′
i}1≤i≤t−−−−−−−−−−−−−−−−−−−−→

Delete /* Assume that block bj is to be deleted */
The logic of Delete is similar to Modify but replaces the block to be modified
with a special block ”DBlock”. So, the inner for loop (step 3.4) will be:
3.4 for l = 1 to r do
—if (gki (l) == j) then
—–νi = νi ⊕ h(ci, l, bj)⊕ h(ci, l,DBlock)

Insert
Physical insert is not supported. Append is allowed by viewing the data file
as a matrix, and appending the new block in a round robin fashion.

Fig. 8: The PSDDP protocol by Ateniese et al. [24].
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and homomorphic linear authenticators (HLAs) built from BLS sig-
natures [18] to construct a PSDDP scheme.
Zhang et al. [28] designed a PSDDP scheme utilizing a new data
structure, which is called block update tree. The tree needs to be
stored at both the owner and the remote server sides to mitigate the
requirement of verification for each dynamic operation. The update
tree has two main features: it is always balanced and its size is in-
dependent of the size of the outsourced data. The block update tree
is a binary tree in which each node contains (i) node type (to indi-
cate the type of dynamic operation), (ii) data block range (L,U),
where the left child of a node has lower indices than L, and the
right child has higher indices than U , (iii) offset R, which is used
to specify the indices of blocks after insert and delete requests; and
(iv) version number V represents the current version of the block.
Zhu et al. [29] proposed a cooperative provable data possession (C-
PDP) based on using hash index hierarchy (HIH) and HLAs. The
HIH is a hierarchical structure that is used to present the relation-
ships among the data blocks of various storage service providers.
The HLAs aggregates the responses generated from different CSPs
into one response based on the sum of the challenges. This aggre-
gation process reduces the communication overhead and achieves
privacy preserving by hiding outsourced data location in the dis-
tributed remote servers.
In the architecture of the C-PDP scheme, one of the CSPs (or an
independent server) works as an organizer. The role of the orga-
nizer includes managing other CSPs, initializing the auditing pro-
cess, communicating with cloud customers, and aggregating all the
responses received from from the CSPs into one response using the
properties of the HLAs. The data owners are allowed to dynami-
cally access and update their data for various applications, and the
verification process is performed for the owners in hybrid clouds.

3.2.3 RSA-Based PSDDP Schemes. Hao et al. [30] adapted the
protocol presented in [11] to support both data dynamic and public
verifiability. The latter allows that anyone who knows the owner’s
public key can challenge the remote server and verify that the server
is still possessing the owner’s files. If a dispute regarding data in-
tegrity occurs between the owner and the CSP, a third party auditor
can determine whether the data integrity is maintained or not. This
third party auditing process should bring in no new vulnerabilities
towards the privacy of owner’s data. The protocol presented in [30]
ensures that the data is kept private during the third party verifica-
tion, where no private information contained in the data is leaked.
Figure 9 summarizes the protocol presented in [30].

4. COMPARATIVE ANALYSIS
In this sub-section we provide a comparison of PDP schemes for
single data copy. The comparison is held from different perspec-
tives:

• Owner pre-computation: the operations performed by the data
owner to process the file before being outsourced to a remote
server.

• Verifier storage overhead: the extra storage required to store
some metadata on the verifier side to be used later during the
verification process.

• Server storage overhead: the extra storage on the server side
required to store some metadata – not including the original
file – sent from the owner.

• Server computation: the operations performed by the server to
provide the data possession guarantee.

Setup

− N = pq is the RSA modulus (p and q are prime numbers)
− g is a generator ofQRN (QRN is the set of quadratic residues modulo
N )

− Public key pk = (N, g) and secret key sk = (p, q).
− f is a pesudo-random function
− File F = {b1, b2, . . . , bm}.
− Data owner generates a tag Dj for each block bj , where Dj = gbj

mod N
− The tags are stored on the owner side and the file is sent to the server.

Challenge Response
Verifier Remote Server
1. Generates a random key r
2. Computes gs = gs mod N (s ∈R ZN )
-

r,gs−−−−−−−−−−−−−−−→
- 3. Generates random coefficients
- {aj = fr(j)}1≤j≤m
- 4. Computes P = (gs)

∑m
j=1 aj .bj modN

- R←−−−−−−−−−−−−−−
5. Generates a set of random coefficients {aj = fr(j)}1≤j≤m
6. Computes Ṕ =

∏m
j=1(D

aj
j mod N) mod N

7. Computes V = Ṕ s mod N

8. Checks V ?
= P

Dynamic Operations
Modify: /* Assume that block bj is to be updated to b′j */

− Server updates bj to b′j

− Owner computes a new block tag D′j = g
b′j mod N .

So, the new block tags are {D1,D2, . . . ,D
′
j , . . . ,Dm}

Insert: /* A block b̂ is to be inserted at index j (or appended at the end) */

− The server updates its file to be
{b1, b2, . . . , bj , b̂, . . . , bm+1} (insert: bj+1 = b̂) or
{b1, b2, . . . , bm, b̂} (append).

− The owner computes a new block tag D̂ = gb̂ mod N , and changes
the block tags to {D1,D2, . . . ,Dj , D̂, . . . ,Dm+1} (insert:Dj+1 =

D̂) or {D1,D2, . . . ,Dm, D̂} (append)

Delete : /* Assume a block at position j is to be deleted*/

− Server deletes the block bj
− Owner deletes the corresponding tag Dj

Fig. 9: The PSDDP protocol by Hao et al. [30].

• Verifier computation: the operations performed by the verifier
to validate the server’s response.

• Communication cost: bandwidth required during the challenge
response phase.

• Unbounded challenges: whether the scheme allows unlimited
number of auditing the data file, or a fixed number of chal-
lenges.

• Fragmentation: whether the file is treated as one chunk, or di-
vided into smaller blocks.

• Type of guarantee: whether the guarantee provided from the
remote server is deterministic guarantee, which requires to ac-
cess all file blocks, or probabilistic guarantee that depends on
spot checking.
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Table 1. : Comparison of PDP schemes for a file containing m blocks, c is the number of blocks to be challenged, t is the number of
tags, and Ñ is a finite number of random challenges.

Scheme [8] [10] [11] [12] [13, 14] [20] [15] [24] [25] [26] [30] [29]
Owner

pre-computation EXF O(1) O(m) O(m) O(1) O(m) O(m) O(t) O(m) O(m) O(m) O(m)

Verifier
storage overhead O(1) O(1) O(m) O(1) O(Ñ) — — — — — O(m) —

Server
storage overhead — — — — — O(m) O(m) O(t) O(m) O(m) — O(m)

Server
computation EXF EXF O(c) O(m) O(1) O(c) O(c) O(c) O(c logm) O(c logm) O(m) O(c)

Verifier
computation O(1) O(1) O(c) O(1) O(1)† O(c) O(c) O(1) O(c logm) O(c logm) O(m) O(c)

Communication
cost O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(1) O(c logm) O(c logm) O(1) O(c)

Unbounded
challenges X X X X × X X × X X X X

Fragmentation × × X X × X X X X X X X
Type of

guarantee DET DET PRO‡ DET DET PRO‡ PRO PRO PRO PRO DET PRO

Dynamic support × × × × × × × X∗ X X X X

† Verifier pre-computation is O(Ñ) to generate a list L of HMACs.
‡ This scheme can be easily modified to support deterministic guarantee.
∗ Block insertion cannot explicitly be supported.

• Dynamic support: whether the scheme supports outsourcing
dynamic data.

We use the notations EXF to indicate the EXponentiation of the en-
tire File, DET to indicate deterministic guarantee, and PRO to in-
dicate probabilistic guarantee. Table 1 summarizes the comparison
from the aforementioned perspectives. In Table 1, m represents the
number of file blocks, c is the number of blocks to be challenged,
t is the number of tags generated by the owner, and Ñ is a finite
number of random challenges (used for schemes that allow only
for fixed number of challenges).

5. SUMMARY AND CONCLUDING REMARKS
In this paper, we have investigated the concept of PDP as a tech-
nique to verify the integrity of data stored on remote sites. We have
provided an extensive survey and a comparative analysis for nu-
merous PDP schemes on a single cloud server. The paper also dis-
cusses the design principles for different PDP models and high-
lights some limitations. In our study, we have addressed PDP pro-
tocols for static data, and PDP schemes that handle dynamic behav-
ior of outsourced data over cloud servers. Through PDP models for
dynamic data, the data owner is able to send requests to the remote
server for updating/scaling the stored data. The verifier is enabled
to make sure that the outsourced data is consistent with the most
recent modifications issued by the owner.
We have provided a comparative analysis for different PDP
schemes. The comparative analysis was done from different per-
spectives: the storage overhead on both the verifier and server sides,
the computation overhead on the server side to prove data pos-
session, the verifier’s computations complexity to check server re-
sponses, the communication cost to send a challenge vector and re-
ceive a response; and the permission for unlimited number of data
audits.
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