
International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.9, August 2015

33

Design and Implementation of RS (255, 223) Detecting

Code in FPGA

Bappaditya Kuila

HIT, Haldia
 West Bengal, India

ABSTRACT
Reed-Solomon (RS) codes are commonly used in the digital

communication. It has high capability to eliminate both

random errors and burst errors. In this work, the encoding of

RS(255, 223) code is designed, synthesized, and simulated

using Verilog language with the device family of virtex4 &

device of xc4vfx12 & compare the result with device family

Spartan3E & device XC3S100E. During the transfer of

message, the data might get corrupted due to lots of

disturbances in the communication channel. So it is necessary

for the decoder tool to also have a function of correcting the

error that might occur. So, from syndrome input-output

waveform, it has been checked that whether there is any error

in the received codeword or not. RS codes are type of burst

error detecting codes which has got many applications due to

its burst error detection and correction nature. This code is

defined over a Galois Field GF() and has the capability of

correcting up to sixteen short bursts of errors.

Keywords
Reed-Solomon code, Linear Feedback Shift Register, Galois

Field, Generator Polynomial, Encoder, Constant Multiplier,

Syndrome, Verilog language.

1. INTRODUCTION
Reed-Solomon (RS) code which was discovered by Irving S.

Reed and Gustave Solomon in Lincoln Laboratory of MIT,

Massachusetts in 1960. It is a kind of multi-Bose-Chaudhuri-

Hocquenghem (BCH) code with high error correction

capability, which is presently one of the most effective and

widely used for error control codes [1]. For the revolution of

telecommunication, RS code has large contribution [2].

Specifically, RS codes can be used in computer memory and

non-volatile memory applications. They are the most

frequently used digital error control codes in the world [3].

The RS encoder algorithm is simpler than RS decoder and the

most significant components are multipliers. Although the

error correcting capability of RS codes is beyond satisfaction,

because of the lack of efficient decoding algorithms they were

not largely applied in their early years. W.W. Peterson firstly

recognized RS codes as a special class of BCH codes [4].

Compared with other linear block codes, in the same coding

efficiency, RS code has strong error correction capability and

its error correction performance is close to the theoretical

value, particularly on the short yards of medium. Not only RS

code can correct the random error, but also it corrects

unexpected error [5]. Therefore, it is widely used in deep-

space communications systems, data storage systems and

digital television transmission [6]. RS code is preferred in

terrestrial broadcast channel, because it is a mixed channel

which has both random error and burst error. In 1977, in the

form of concatenated codes, RS codes were notably applied in

the Voyager program [7]. In 1982, with the compact disc,

there was the first commercial application in mass-produced

consumer products, where two interleaved RS codes are used

[8]. Today, RS codes are largely implemented in digital

storage devices and digital communication standards, though,

by more modern low-density parity-check (LDPC) codes or

turbo codes, they are being slowly replaced [9]. For example,

RS codes are used in the Digital Video Broadcasting (DVB)

standard DVB-S, but LDPC codes are used in its successor

DVB-S2. RS code belongs to a family of error-correction

algorithms known as BCH [10-13]. To process message data,

BCH algorithms use finite fields and to detect errors in the

encoded data, they use polynomial structures, called

"syndromes," [14]. They can determine the presence of errors

and compute the correct values by adding the check symbols

to the data block. BCH algorithms have strict control over the

number of check symbols [15]. Design of some other RS code

like RS (204, 188) & RS (255, 251) in FPGA were performed

by H. Zhang (California State University, Northridge) & A.
S. Das et. al. respectively [16]. RS code is also a linear and

polynomial algorithm as it processes message data as discrete

blocks and it is used in modular polynomials. J. Bhaumik et.

al. , proposed a programmable RS encoder [17]. The received

codeword is entered to RS decoder to be decoded, the decoder

first tries to check if this codeword is a valid codeword or not.

If it does not, errors occurred during transmission. This part of

the decoder processing is called error detection, which is done

by syndrome. If errors are detected, the decoder tries to

correct this error using error correction part by using different

algorithms [18-20].

In this work, the encoding of RS(255, 223) code is designed,

synthesized and simulated using Verilog language with the

help of 32 constant multipliers and by syndrome’s simulation

waveform, it has been checked whether the received

codeword is error free or not. To get the result of encoder,

firstly these multipliers are designed, synthesized and

simulated using Verilog language. Before proceeding for the

main program of encoder, these results are checked in Matlab

code also. In the same way, the syndrome is also designed by

using 32 syndrome blocks. In Section 2, RS(255, 223)

encoder and syndrome are discussed briefly. Synthesis results

and simulation waveforms are given in Section 3. In Section

4, performance comparison of RS(255, 223) encoder is

shown. Future work is mentioned in Section 5. The paper is

concluded in Section 6.

2. RS (255, 223) ENCODER
The topics, discussed in this Section are the elements of

GF(), characteristics of RS(255, 223) code, RS encoder

block diagram, the design of RS(255, 223) encoder using

Linear Feedback Shift Register (LFSR) and basic idea of

syndrome.

2.1 Elements of GF()

Finite field or Galois field is an algebraic theory raised by

French mathematics genius Évariste Galois. Galois fields are

http://en.wikipedia.org/wiki/%C3%89variste_Galois

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.9, August 2015

34

very important in coding theory. The RS codes studied in this

paper are based on finite fields.

The elements of RS code discussed in this paper are on the

field GF() = 256. There are = 256 elements on GF(),

among which 255 elements are non-zero [14]. The primitive

polynomial on GF () is p(x) = + + + 1. From

the primitive polynomial + + + 1 = 0,

the elements with order greater than “7” can be derived. The

256 elements on field GF (are shown in Table 1.

Table 1: Elements of Field GF(

Power Polynomial

Form

Binary

Form

Decimal

Form

0 0 00000000 0

 1 00000001 1

 00000010 2

 00000100 4

 00001000 8

 00010000 16

 00100000 32

 01000000 64

 10000000 128

00011101 29

00111010 58

01110100 116

11101000 232

11001101 205

10000111 135

 +1 00010011 19

… … … …

01000111 71

10001110 142

2.2 Characteristics of RS(255, 223) code
The characteristics of RS(255, 223) code are discussed in this

paper are as below:

Degree of the Polynomial: m = 8

Code Length: n = 255

Information Symbols: k = 223

Parity Check Symbols: r = n – k = 2t = 32

Minimum Distance: dmin = n – k +1 = 2t+1 = 33

Error Correcting Capability: t =16

Code Rate = Code Efficiency = k/n = 223/255 = 0.875

However, each symbol is represented by eight binary digits or

one byte. Also, each data block contains 223 information

symbols. This code is capable of correcting up to sixteen short

burst errors of one byte or any burst error combination of up

to a total length of eight bytes, providing that they only affect

a maximum of sixteen individual symbols [15].

2.3 Construction of GF()
The elements of GF() are generated by primitive

polynomial of degree 8.

p(x) = + + + + 1

Let be the primitive element in GF() and the root of p(X)

Then,

p(x) = + + + + 1= 0

Or

 + + + 1

So, the elements can be represented in an 8-tuple with 8

components being 0 or 1 and represent code word [17]. The

zero element of GF() appears as an all zero 8-tuple.

Also, if is a primitive element in GF(), then the root of

p(x) is only the first thirty-two powers of and are the roots

of the generator polynomial. Meanwhile, the generator

polynomial for (255, 223) code is given by:

g(x)=

g(x) = 45 + 216x + 239 + 24 + 253 + 104 + 27 +

40 + 107 + 50 + 163 + 210 + 227 +

134 + 224 + 158 + 119 + 13 + 158 +

+ 238 + 164 + 82 + 43 + 15 + 232 +

246 + 142 + 50 + 189 + 29 + 232 +

Therefore, the coefficients of g(x) used in the encoder

multiplication are:

 = 45, = 216, 239, = 24, 253, = 104,

 = 27, = 40, = 107, 50, = 163,

210, = 227, = 134, = 224, =158, = 119,

 = 13, = 158, =1, = 238, = 164, = 82,

 =43, = 15, = 232, = 246, = 142, =50,

 =189, =29, = 232, = 1

2.4 Encoder Architecture
The block diagram of RS encoder is shown in Figure 1 [18].

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.9, August 2015

35

Figure 1: RS Encoder Block Diagram

Encoders are designed as feedback shift register, Figure 2.

The data massage blocks of 223 symbols shift sequentially as

an input to the encoder and when the last message symbol is

loaded, the feedback register contains the thirty-two parity

check symbols. These symbols will then be shifted out

following the 223 information symbols to generate a code

word of 255 symbols as an output of the encoder [20].

Figure 2: RS(255, 223) Encoder using LFSR

2.5 Syndrome
Syndrome is utilized to determine whether an error happened

in the transmission. If value of the syndrome is 0, there is no

error in the transmission and the received sequence is the code

word; while if syndrome value is non zero, then there is error,

hence error correction is needed. Syndrome values are only

dependent on the error pattern. It checks if there is any error

in the received codeword or not.

r(X) = c(X) + e(X)

Where, code word = c(x), error pattern = e(x), received signal

= r(x)

There are 32 syndrome blocks which has helped us to get the

input and output waveform of syndrome. In Table 2, the

values of 32 syndrome blocks are shown. Firstly these 32

syndrome blocks are synthesized and simulated using Verilog

code with the device family of virtex4 & device of xc4vfx12.

The syndrome blocks’ simulation result is checked by Matlab

code. Then the syndrome is synthesized and simulated with

the help of these syndrome blocks.

Table 2: Syndrome Blocks

SYNDROME BLOCKS

 = 2 = 152

 = 4 = 45

 = 8 = 90

 = 16 = 180

 = 32 = 117

 = 64 = 234

 = 128 = 201

 = 29 = 143

 = 58 = 3

 = 116 = 6

 = 232 = 12

 = 205 = 24

 = 135 = 48

 = 19 = 96

 = 38 = 192

 = 76 = 157

3. SYNTHESIS RESULTS AND

SIMULATION WAVEFORMS
In this section, synthesis results and simulation waveforms of

32 coefficients, RS(255, 223) encoder, 32 syndrome blocks

and syndrome have been elaborated.

In Table 3, synthesis result of 32 coefficients used in RS(255,

223) encoder is shown. These results are got in Verilog

language using device family virtex4 and device xc4vfx12.

Table 3: Synthesis Result for Coefficients of Generator

Polynomial g(x)

Coefficients Number

of Slices

Number

of 4

Input

LUTs

Number

of

Bounded

IOBs

Delay

(ns)

1 … … 16 3.562

13 6 10 16 4.95

15 7 12 16 4.97

24 5 8 16 4.288

27 6 10 16 4.949

29 5 9 16 4.949

40 6 10 16 4.957

43 5 8 16 4.281

45 6 10 16 4.957

50 6 10 16 4.949

104 5 9 16 4.971

107 8 14 16 4.949

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.9, August 2015

36

119 6 11 16 4.971

134 4 7 16 4.283

142 2 3 16 4.281

158 4 7 16 4.288

163 7 13 16 4.957

164 5 8 16 4.282

189 6 11 16 4.963

210 7 12 16 4.961

216 3 6 16 4.288

224 6 11 16 4.971

227 6 11 16 4.971

232 6 10 16 4.957

238 5 9 16 4.971

239 7 12 16 4.957

246 8 14 16 4.971

253 7 13 16 4.895

After getting these synthesis result, all the 32 coefficients are

simulated. The simulation waveform in Figure 3, for

coefficient is shown. All the results are checked using

Matlab code.

Figure 3: Simulation Waveform for Coefficient = 45

Using Matlab code, we can Verify the Simulation Result

for Coefficient = 45:

This code is defined over Galois Field GF() and the

primitive polynomial is + + + + 1 (285

decimal). For the coefficient = 45, if we multiply it by 1,

2, 4, 8, 16, 32, 64, 128. The result will come 45, 90, 180, 117,

234, 201, 143, 3.

In Table 4, synthesis result of RS(255, 223) encoder is shown.

These results are got in Verilog language using device family

virtex4 and device xc4vfx12.

Table 4: Synthesis Result of RS(255, 223) Encoder

Numb

er of

Slices

Numb

er of

Slice

Flip

Flops

Numb

er of 4

Input

LUTS

Numb

er of

IOS

Numb

er of

Boun

ded

IOBS

Numb

er of

GCL

KS

Delay

(ns)

239

256

455

22

22

1

3.014

After getting the synthesis result, the input and output

waveform for RS(255, 223) encoder is shown in Figure 4 for

the input 1 in all 223 input message signal.

Figure 4: The parity bits obtained when input is ‘1’ for all 223

input message signal (The parity bits are respectively 131,

109, 87, 91,………………, 54, 134, 202. The next output ‘0’

shows that encoding of code is completed)

In Table 5, synthesis result of syndrome blocks is shown.

These results are got in Verilog language using device family

virtex4 and device xc4vfx12.

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.9, August 2015

37

Table 5: Synthesis Result of Syndrome Blocks

Syndrome

Blocks

Number of

Slices (out of

5472)

Number of 4

Input LUTs (out

of 10944)

Delay

(ns)

 = 2 2 3 4.868

 = 4 2 4 4.946

 = 8 3 5 4.986

 = 16 3 6 4.986

 = 32 4 7 4.986

 = 64 4 8 4.993

 = 128 4 8 4.993

 = 29 5 9 4.949

 = 58 5 9 5.277

 = 116 5 9 5.277

 = 232 6 10 4.957

 = 205 5 9 5.582

 = 135 5 9 5.284

 = 19 5 9 5.419

 = 38 5 9 5.541

 = 76 5 9 5.569

 = 152 5 9 5.627

 = 45 6 10 4.957

 = 90 5 9 5.284

 = 180 4 8 5.543

 = 117 5 9 5.294

 = 234 4 8 5.542

 = 201 4 8 4.986

 = 143 4 8 4.953

 = 3 4 8 4.949

 = 6 4 8 4.989

 = 12 4 8 4.993

 = 24 5 8 4.288

 = 48 4 8 5.543

 = 96 4 8 5.543

 = 192 4 8 5.620

 = 157 4 8 5.660

After getting the synthesis result, the input and output

waveform for syndrome block is shown in Figure 5. All the

syndrome blocks are simulated using Verilog language and

the results are checked by Matlab code.

Figure 5: Simulation Waveform of Syndrome Block = 8

Using Matlab code, we can Verify the Simulation Result

for Coefficient = 8:

This code is defined over Galois Field GF() and the

primitive polynomial is + + + + 1 (285

decimal). For the coefficient = 8, if we multiply it by 1, 2,

4, 8, 16, 32, 64, 128. The result will come 8, 16, 32, 64, 128,

29, 58, 116.

In Table 6, synthesis result of syndrome is shown. The result

is got in Verilog language using device family virtex4 and

device xc4vfx12.

Table 6: Synthesis Result of Syndrome

Number

of Slices

Number

of Slice

Flip

Flops

Number

of 4

Input

LUTS

Number

of

GCLKS

Delay

(ns)

408

256

789

1

2.131

After getting the synthesis result, the input and output

waveform for syndrome is shown in Figure 6.

In the input of this waveform it is seen that, 32 parity bits are

given, which are got from simulation result of RS(255, 223)

Encoder in Figure 4, when input is ‘1’ for all 223 input

message signal. In the simulation result, syndrome is non

zero, so there is error in the received codeword, hence error

correction is needed.

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.9, August 2015

38

Figure 6: Simulation Waveform of Syndrome

4. PERFORMANCE COMPARISON
In Table 4, the synthesis result of RS(255, 223) encoder by

using the device family of Virtex4 & device of Xc4vfx12 is

shown. It is compared with device family of Spartan3E &

device of XC3S100E. The performance comparison between

these two is listed in Table 4, where it is seen that number of

Slice Flip-Flops, IOBS, bounded IOBS & GCLKS are same

for both the cases. But for device family Virtex4, number of

Slices is needed more than device family Spartan3E, whereas

Spartan3E’s delay is greater than the device family Virtex4.

Table 7: Performance Comparison of Synthesis Result for

RS(255, 223) encoder

Device

Used

Nu

mb

er

of

Slic

es

Num

ber

of

Slice

Flip

Flop

s

Nu

mb

er

of 4

Inp

ut

LU

TS

Nu

mb

er

of

IOS

Num

ber

of

Boun

ded

IOB

S

Nu

mb

er

of

GC

LK

S

Dela

y

(ns)

Virtex4

&

device:

Xc4vfx

12

239

256

455

22

22

1

3.014

Spartan

3E &

device:

XC3S1

00E

238

256

453

22

22

1

6.124

5. FUTURE WORK
In this work, the synthesis result with simulation waveform of

RS(255, 223) encoder and syndrome are shown. During the

transfer of message, the data might get corrupted due to lots of

disturbances in the communication channel. In the syndrome’s

input-output waveform, it is seen that the value of the

syndrome is non zero. So there is error in the transmitted

codeword. By correcting these errors, we can recover the

actual codeword. So the future work will be,

A. Determine the roots of which are related to the error

locations using Chien Search

B. Calculate the values of the error evaluator using

Forney Algorithm

C. Recover the corrected codeword by adding E(x)

with R(x)

6. CONCLUSION

The communication channel in modern digital and data

storage systems requires error detecting and correcting codes

to correct the errors that occur during the transmission of data.

It can be also implemented on Visual Sensor Network (VSN),

Deep-Space communication and Digital μ-wave radio. In this

paper, RS encoding, system specification of RS (255, 223)

encoder with its architecture & design using LFSR are

discussed. The co-efficients of generator polynomial used in

the encoder multiplication are mentioned. These terms are

simulated using Verilog code & whether the simulation results

are right or wrong, are tested by Matlab code which has

helped to design encoder. With the help of these co-efficient

International Journal of Computer Applications (0975 – 8887)

Volume 123 – No.9, August 2015

39

terms, the simulation waveform of RS(255, 223) encoder is

got by using the Verilog code and performance comparison of

RS(255, 223) encoder using a different device is shown.

Lastly syndrome is simulated by using the syndrome blocks

which is also shown in this paper. As the received codeword

is erroneous, so error correction is necessary. So, in this paper,

it is detected whether the received code word is error free or

not.

7. ACKNOWLEDGEMENTS
I am very thankful to Mr. Jagannath Samanta who has

contributed towards the development of this work.

8. REFERENCES
[1] I. S. Reed and G. Solomon. Polynomial codes over

certain finite fields. Journal of the Society for Industrial

and Applied Mathematics, 8:300-304, 1960.

[2] ETSI, 1997. Digital broadcasting systems for television,

sound and data services; Framing structure, channel

coding and modulation for digital terrestrial television.

European Telecommunication Standard ETS 300 744.

[3] S.B. Wicker. Error Control Systems for Digital

Communication and Storage. Prentice-Hall, Englewood

Clips, NJ, 1995.

[4] G. D. Forney, Jr. On decoding BCH codes. IEEE

Transactions on Information Theory, IT-11:549-557,

1965.

[5] S. Liu and Jr. D. J. Costello. Error Control Coding:

Fundamentals and Applications. Prentice-Hall,

Englewood Clips, NJ, 1983.

[6] Akyildiz, I.F., T. Melodia, and K.R. Chowdury, Wireless

multimedia sensor networks: A survey. IEEE Wireless

Communications. 2007, 14(6): p. 32-39.

[7] H. Y. Hsu and A. Y. Wu, “VLSI Design of a

Reconfigurable Multimode Reed-Solomon Codec for

High Speed Communication Systems,” in IEEE Asia-

Pacific Conference on ASIC, 2002, pp. 359-362.

[8] K.A.S. Immink, \Reed Solomon codes and the compact

disc," in Reed-Solomon Codes and Their Applications,

eds. S.B. Wicker and V.K. Bhargava. New York: IEEE

Press, 1994, pp. 41-59.

[9] Stephen B. Wicker and Vijay K. Bhargava, “Reed-

Solomon codes and their applications”, IEEE Press, New

Jersey, 1994.

[10] J. L. Massey. Shift register synthesis and BCH decoding.

IEEE Trans-actions on Information Theory, pages 122 -

127, January 1969.

[11] Sklar B, “Digital Communication: Fundamentals and
Applications”, Second Edition, Prentice-Hal, 2001.

[12] Pretzel, O. 1992.Error-correcting codes and finite fields.

Clarendon Press, Oxford, 1992.

[13] R. T. Chien. Cyclic decoding procedures for Bose-

Chaudhuri-Hocquenghem codes. IEEE Transactions on

Information Theory, IT-10:357 - 363, October 1964.

[14] Y. R. Shayan and T. Le-Ngoc, “Decoding Reed-

Solomon codes generated by any generator polynomial,”

Electronics Letters, vol. 25, no. 18, Aug. 1989, pp. 1223-

1224.

[15] T. Yaghoobian and I.F. Blake “Reed Solomon and

Algebraic Geometry Codes," in Reed-Solomon Codes

and Their Applications, eds. S.B. Wicker and V.K.

Bhargava. New York: IEEE Press, 1994, pp. 292-314.

[16] Anindya Sundar Das, Satyajit Das and Jaydeb Bhaumik,

Design of RS (255, 251) Encoder and Decoder in FPGA .

International Journal of Soft Computing and Engineering

(IJSCE) ISSN: 2231-2307, Volume-2, Issue-6, January.

[17] Jaydeb Bhaumik, Anindya Sundar Das and Jagannath

Samanta, Architecture for Programmable Generator

Polynomial Based Reed-Solomon Encoder and Decoder.

International Journal of Soft Computing and Engineering

(IJSCE) ISSN: 2231-2307, Volume-2, Issue-6, January

[18] J. Bhaumik and D. Roy Chowdhury, “An Integrated
ECC-MAC Based on RS Code,” Transactions on

Computational Science, vol. IV, LNCS5430, Apr. 2009,

pp. 117-135.

[19] Syed Shahzad Sha, Saqib Yaqub, and Faisal Suleman, “
Self-correcting codes conquer noise Part 2: Reed-

Solomon codec’s”, EDN, pp. 107-120, March 2001.

[20] J. Jittawutipoka and J. Ngarmnil, “Low complexity

Reed-Solomon encoder using globally optimized finite

field multipliers”, TENCON 2004, 2004 IEEE Region 10

Conference, vol. D, 21-24 Nov. 2004, pp. 423-426, doi:

10.1109/TENCON.2004.1414960.

IJCATM : www.ijcaonline.org

