
International Journal of Computer Applications (0975 - 8887)
Volume 124 - No.10, August 2015

Genetic Algorithm for Solving Course Timetable
Problems

Mahmoud M. El-Sherbiny
Operations Research Dept., Institute
of Statistical Studies and Research

(ISSR), Cairo University, Egypt

Ramadan A. Zeineldin
Operations Research Dept., Institute
of Statistical Studies and Research

(ISSR), Cairo University, Egypt

Abdallah M. El-Dhshan
Operations Research Dept., Institute
of Statistical Studies and Research

(ISSR), Cairo University, Egypt

ABSTRACT
Course Timetable Problem (CTTP) is considered as a multi-
assignments problem. This problem occurs during the assignment
of a set of events (courses, subjects and teachers) to specific num-
ber of appointments (timeslots, days and rooms) under a set of hard
and soft constraints. In this paper, the proposed algorithm is rep-
resented for solving the CTTP based on the combination of Ge-
netic Algorithms (GA) and Hill Climbing Optimization (HCO).
The proposed algorithm is tested over two stages. The first stage
is used to discover the fittest mutation out of 16 mutation func-
tions. So, the Relative Percentage Deviation (RPD) is described
as a comparison method to discover the best mutation function
for solving the CTTP. The second stage is considered to mea-
sure the effectiveness and efficiency of the proposed algorithm
over 5 datasets namely hddt benchmark. The results show that
the proposed algorithm is able to generate good and optimal so-
lutions when compared against other approaches from literature.

General Terms
Genetic Algorithms, Hill Climbing Optimization

Keywords
Course Timetable Problem, Genetic Algorithms, Hill Climbing Op-
timization, Metaheuristics

1. INTRODUCTION
Timetabling is an important daily life problem that is frequently
encountered in educations, companies, sports event and transport.
Course Timetable Problem (CTTP) is a major type of education
filed, The CTTP classified as NP-complete problem as it incorpo-
ration multi-dimensional and multi-objectives. Generate a solution
for timetabling by traditional methods need a very difficult effort
and time to satisfy all problem constraints. The problem constraints
can be classified as hard constraints which must not be violated be-
cause it effect on the solution feasibility, and soft constraints which
can be violated if necessary, but will effect on the solution qual-
ity. The objective of timetabling problem is to maximize the num-
ber of stratified soft constraint for a feasible solution that is gen-
erated by the hard constraints. As the CTTP is a one of the reach-
able development area, there are many researches cared it out, and
varies of methodologies are used for solve this type of problems.

Metaheuristics is a fertile field for optimizing the CTTP. The meta-
heuristics can be divided into Singlebased (Search Trajectory) and
Population-based algorithms [11]. There are many single-based al-
gorithms implemented for solving the CTTP such as tabu search
[12], simulated annealing [20] and great deluge [18]. Also, the
population-based algorithms are used for solving the CTTP for ex-
ample genetic algorithm [13][15][16] and particle swarm [10][6].
In addition, other techniques are presented such as heuristic [15],
hybridized approaches [4][3] and integer programming as a one of
methodologies that are used to solve CTTP [14].
The main contribution of the study presented in this work to pro-
pose an algorithm able to solve the course timetable problems and
Compete with the other techniques. The proposed algorithm com-
bines the Genetic Algorithm (GA) and Hill Climbing Optimization
(HCO).The GA as a type of metaheuristic approaches explores the
solutions of the search space which guided to give optimal or near
optimal solutions. While, the HCO is used as a local search method
to move form a solution to a better one. In addition to GA and HCO,
A powerful mutation type selected from 16 types of mutations ap-
plied in the reproduction phase. Also, A new coding and decoding
functions used in the solution representation. This proposed algo-
rithm was developed to produce better results than other methods
solved the hdtt benchmark which contains a five problems.
The paper is organized as follows. Section 1 is the introduction.
In Section 2, the problem definition of CTTP is described. In Sec-
tion 3, it is focused on the solution representation. In Section 4, the
proposed algorithm combining genetic algorithm and hill climbing
to solve the CTTP is described. In Section 5, shows the testing and
the experimental results of the proposed algorithm. Finally, conclu-
sions are included in Section 6.

2. PROBLEM DEFINITION
As described in the introduction, CTTP is known as a multi-
dimensional assignment problem in which teacher assigned to class
to teach subject in a room at a specific time. The assignment has to
satisfy a set of hard and soft constraints.
Let T is a set of teachers; each lecture of each subject s will have a
teacher previously assigned.
let C a set of classes; each class has a fixed number of lectures dur-
ing a week; and the class c must assigned to only one teacher for
any timeslot.
Let S a set of subjects.
Let R a set of rooms.

1



International Journal of Computer Applications (0975 - 8887)
Volume 124 - No.10, August 2015

Let P a set of teaching periods per day.
Let D a set of days.
Let At,s a set of periods when teacher t of subject s is available.
And let the decision variables be as:

Xtcsrpd =

 1 if teacher t teaches subject s for class c in room r
at period p in day d

0 otherwise

2.1 Hard Constraints
The hard constraints are the pivot element of building the CTTP.
Any feasible solution has to satisfy all hard constraints. The set of
CTTP hard constraints follows as [20]:
HC1:A teacher cannot be assigned to more than one class during
any time slot.∑

c∈C

Xtcsrpd ≤ 1 ∀ t ∈ Ts, s ∈ S, r ∈ R, p ∈ P, d ∈ D, (1)

HC2: A class cannot be assigned to more than one teacher for any
time slot.∑

s∈S

∑
t∈Ts

Xtcsrpd ≤ 1 ∀ c ∈ C, r ∈ R, p ∈ P, d ∈ D, (2)

HC3: A room cannot be allocated to more than once for any time
slot. ∑

t∈Ts

∑
c∈C

∑
s∈S

Xtcsrpd ≤ 1 ∀ r ∈ R, p ∈ P, d ∈ D, (3)

HC4: A teacher t, teaching subject s, is to be assigned lt,s lectures
(time periods or time slots) per week.∑

c∈C

∑
r∈R

∑
d∈D

∑
p∈P

Xtcsrpd = lt,s ∀ s ∈ S, t ∈ Ts, (4)

HC5: A class c must attend lc lectures per week.∑
s∈S

∑
t∈Ts

∑
r∈R

∑
d∈D

∑
p∈P

Xtcsrpd = lc ∀ c ∈ C, (5)

2.2 Soft Constraints
The soft constraints are used as an evaluation tool quality of a feasi-
ble timetable. They are different from problem to another upon the
enterprise rules such as teacher preference time, consecutive and
isolated lectures for a students, and room utilization.
SC1: Teachers’ timeslot preferences is considered to assign a set
of Teachers to a set of timeslots based on the Teachers’ prefer-
ences. Every teacher lists the timeslot preferences to teach class.
Let T = {1, 2, · · · , t} be a set of teachers, and P = {1, 2, · · · , p}
be a set of timeslots, where (t≤p). cij is defined as the preference
given by teacher i to being assigned j timeslot. A teacher-timeslot
preference matrix (t × p) is formed to contain the teachers pref-
erences in the following sense. The value of ′1′ indicates the first
timeslot choice of the teacher, the value of ′2′ indicates the second
timeslot choice, and so on up to a specific number indicating the
maximum number of timeslots ′p′. If cij has not been assigned an
integer value (i.e. teacher i has not included timeslot j in their list
of preferences), then cij is assigned a penalty value B (suitably
large). Additionally, some priority weights wi could be assigned to
each teacher so as to give some teachers a better chance of being
allocated their higher preference projects. The mathematical pro-

gramming formulation can be illustrated as follows [8]:

Min

t∑
i=1

p∑
j=1

wicijxij (6)

s.t.

t∑
j=1

xij = 1 ∀ i ∈ p (7)

Equation (7) ensures that each teacher is assigned only one times-
lot.

t∑
i=1

xij ≤ 1 ∀ j ∈ p (8)

Equation (8) specifies that each timeslot is assigned at most once
as the number of timeslots might exceed the number of teachers.

xij ∈ {0, 1} ∀ i ∈ p, ∀ j ∈ T (9)

Where

Xij =

{
1 if teacher i is assigned to timeslot j
0 otherwise

and
∀ i ∈ P, j ∈ T , cij = B if cij /∈ T

SC2: Room Utilization
Let R = {1, 2, · · · ,m} be a set of rooms, D = {1, 2 · · · , y} be a
set of days and P = {1, 2, · · · , n} is a set of teaching timeslots for
ever day. The capacity of rooms is RCr and let SNrdt be number
of students attending a course assigned to room r during timeslot
p at day d. rooms’ utilization can be formulated as minimization a
cost function. The cost function is calculated by the difference be-
tween the number of students and room capacity. The mathematical
formulation as follows [2]:

Min

m∑
r=1

y∑
d=1

n∑
p=1

(RCr − SNrdp) (10)

s.t.

m∑
r=1

SNr ≤ Ri and SNrdp exists (11)

2.3 Fitness Function
Timetable schedule should have a fitness value as evaluation of an
individual’s fitness which is labeled fitness function. It can be rep-
resented as [7]:

eval(f) =
1

1 + cost(f)
(12)

Where cost(f) is value of violating constraints and is calculated as
(13):

cost(f) =
ct∑
i=1

ni(f)×Wi (13)

Where ct is the count of constraints, ni(f) is the penalty of
violating constraint i and wi is its weight.

The objective of CTTP is to minimize the number of soft con-
straints violation in a feasible solution that generated by hard con-
straints.

2



International Journal of Computer Applications (0975 - 8887)
Volume 124 - No.10, August 2015

3. SOLUTION REPRESENTATION
A good structure of the solution is important in GA. It makes
the generation and reproduction of the solutions more easier, and
helpful in solving CTTP. Fig.1 illustrates how timetable schedule
(individual) is represented. Appointment A = {a1, a2, · · · , aj}
represented as set of periods (timeslots) P = {1, 2, · · · , p}, for
every room R = {1, 2, · · · , r}, every day D = {1, 2, · · · , d}.
Appointments can be represented as a vector with size (p× r× d).
There is an additional list of events E = {e1, e2, · · · , ei} which is
used to link subject S = {1, 2, · · · , s}, teacher T = {1, 2, · · · , t},
and class (student group) C = {1, 2, · · · , c}.

Fig. 1. Representation of a chromosome.

The available appointment list is an array of length [(roomNum×
dayNum × periodNum)] its index designed to know the details
of the appointment (which room, day and period) by using the index
encoding and decoding. Index design makes the reproduction of the
chromosome more easier.

3.1 Index Encoding
The index can be calculated by (14).

Index = (r×Days#×Periods#)+(d×Periods#)+p (14)

Where r: room number, d: day number, p: period number, Days#:
Number of days per week, Period#: Number of periods per day.
Example: If Rooms# = 3 rooms, Days# = 5 days, and
Periods# = 12 period per day. So, the length of the appointment
array will be:
length=[3× 5× 12] (180 appointments)
If r = 2, d =2 and p =9. Then the allocation index will be:
Index=(2× 5× 12) + (2× 12) + 9 = 153

3.2 Index Decoding
Reverse calculation of index to get timeslot, room and day can be
as (15), (16) and (17) respectively:

p = index mod Periods# (15)

d = (index/Periods#) mod Days# (16)

r = (index/(Periods#×Days#)) mod Rooms# (17)

Where, mod is modulo operation.
Example: If the index =162 then we can calculate period, room
and day as follows:
p = 162 mod 12 = 6,
d = (162/12) mod 5 = 3,
r = (162/(12× 5)) mod 5 = 2.

4. THE PROPOSED ALGORITHM
In this section, the proposed algorithm is adding a short memory
wise with hill climbing to GA platform to find optimal solutions
for CTTP. The proposed algorithm developed to reduce the time of
GA with the powerful of hill climbing as a local search technique.
In addition, the Hill Climbing Rate (HCR) is used to control the Hill
Climbing Optimization (HCO) to avoid trapping into local optimal
solution.
The proposed algorithm
Step 1: Identify the number of generation and the population size.
Step 2: Declare an initial individual to be the best individual.
Step 3: Set g =1.
Step 4: Create initial population of individuals.
Step 5: For each individual in the population.

5.1. Evaluate the individual.
5.2. If the fitness of the individual is better than

the best individual.
5.3. Replace the best individual by the current individual.
5.4. If the best individual is idle solution go to step 10.

Step 6: For population size times do.
6.1. Select individual from the population.
6.2. Apply the mutation function on the selected individual

using hill climbing Optimization.
6.3. Add the mutated individual to the new population.

Step 7: Update the population with the new population.
Step 8: g =g+1.
Step 9: Repeat step 5 to step 8 until g > the number of generation.
Step 10: Return the best individual.

4.1 Initial Population
As described in solution representation, there are group of events
(Teacher Id, Class Id and Subject Id) need an appointments (Room
Id, Day Id and Period Id) to create the chromosome (individual or
solution). For each new individual the proposed algorithm orders
the events by its number of lectures, then start with the first event
and select randomly an appointment from the free appointments
list (dynamic list for only the free appointments) and allocate the
index of the appointment to the event in the individual. In Paral-
lel, the proposed algorithm uses a short memory wise to tabu the
appointments for each teacher and class to prevent the clashing as
can possible by comparing this list with the free appointments list
at the next event to get a fit assignment.

4.2 Evaluating Fitness Function
Fitness function checks the constraints violation for every event in
the individual, and marks this event as a violation event that will
used in the reproduction population in the next section, the number
of violating event called the cost function and use fitness function
equation in section 3 to calculated the fitness of the individual.

4.3 Reproduction
As the solution structure that is described in section 3, the crossover
operation will be difficult to use and will not produce a good chil-
dren than their parents. So, the proposed algorithm depends on the
mutation operation only. Therefore, 16 type of mutation functions
are represented as following to determined the fittest one for solv-
ing CTTP [9].

(1) Two point swaps which based on select a random conflicted
event and swap with another random event. Then, swap the
appointment of each other Fig.2

3



International Journal of Computer Applications (0975 - 8887)
Volume 124 - No.10, August 2015

Fig. 2. Two point swap.

(2) Inverse swap, this type of mutation is based on select two ran-
dom events, one from the conflicted events and the other from
all events. Then, inverse the order of the appointments between
the two events Fig.3

Fig. 3. Inverse swap.

(3) Neighbor swap, which based on select a random conflicted
event and swap appointment with the next event Fig. 4.

Fig. 4. Neighbor swap.

(4) Uniform random number swap, which swaps with a setup fixed
number for all individuals during all iterations.This fixed num-
ber is donated by MNS.The number of swaps (NS) for this
mutation is represented by (18).

NS = MNS (18)

(5) This mutation is based on generating a random number for
NS ∈ [1, a] where a denotes to the length of the available
events.Then, the two point swap (mutation number 1) is per-
formed NS times. The number of swaps (NS) for this mutation
is represented in (19)

NS = Int(Rand(1, a)) (19)

(6) This type of mutation based on a uniform random number lo-
cated in the range of 10-30% of the number of events for the
individual. The number of swaps (NS) for this mutation is rep-
resented by (20), where r is a random number in the interval
[0.1, 0.3].

NS = Int(Rand(1, r(a))) (20)

(7) This mutation is based on time where there need more number
of swaps at the beginning. And it decrease by the time elapsed.
First start with applying random number of two-points-swap
till a predefined ratio of time is elapsed. After that the two
points swap (mutation number 1) is applied for the remaining
time. The time is represented by the ratio of current iteration to
the total number of iterations.

(8) This mutation is based on either non-uniform swap times or in-
verse swap (Mutation number 3). A random number r ∈ [0, 1]
is generated, if r > the predefined value, then the non-uniform
swap time will be applied; else inverse swap will be applied.

(9) Also this mutation depends on the time. A random number of
swaps are applied first; then inverse swap is applied for the
reminding time.

(10) This mutation is applied the neighbor swap (Mutation number
3) r times, where r ∈ [0, a/2] for each individual.

(11) This mutation is also based on time. First applied a random
number of neighbor swap till a predefined ratio of time elapsed,
then the master neighbor swap (mutation number 3) is applied
for the remaining time.

(12) This mutation is based on the fitness of the solution. That the
Normalized Fitness (NF) of the solution increase of decrease
the number of swaps abound the NF. That is for minimize prob-
lems if the NF is near to one then it need more swaps otherwise
the NS will decrease the number of swaps. The NS is adopted
in (21) and NF is calculated as (22).

NS = MNS(1−(1−NF )u) (21)

NF =
LowestF itness− Fitness

LowestF itness−HighestF itness
(22)

(13) This Mutation is designed to applying a number of swaps de-
pends on the ratio (T) of the current iteration number (CIN)
and the Total Number of Iteration (TNI), the Number of Swaps
(NS) is represented in (23) where u is the degree of non-
uniformity.

NS = MNS(1−Tu), where T =
CIN

TNI
(23)

(14) This mutation is based on both time and normalized fitness of
the individual. It mainly depends on the average of them, it can
calculate as in (24) and NS is represented in (25).

TF =
1

2
(NF + (1− T )) (24)

NS = MNS(1−TFu) (25)

(15) This type of mutation is based on the non-uniform factor and
the fitness but with a random factor R ∈ [0,1], which add some
randomization.The mutation is adapted as (26).

NS = MNS ×R(1−NF )u (26)

(16) This mutation is the same like mutation number 15 except it
depends on the time not on fitness. NS is represented as (27).

NS = MNS ×R(Tu) (27)

4.4 Hill Climbing Optimization (HCO)
HCO is an optimization local searcher. The HCO accept only the
solution that is fitter than the best one. the proposed algorithm is
used it to find the local optima from the selected neighborhoods.
In addition to HCO the HCR is used to exploit the neighborhoods,
which controls the HCO by comparing a uniform random number
with HCR parameter. That decide whether the HCO will apply on
the selection neighborhood or not.

4



International Journal of Computer Applications (0975 - 8887)
Volume 124 - No.10, August 2015

Table 1. The comparative results of the average RPD for the proposed mutation functions

Mutation Function
Average RPD of the instances

Overall Mean RPD Ranks
HDTT4 HDTT5 HDTT6 HDTT7 HDTT8

1 0.00 0.00 0.19 0.45 0.45 0.22 10
2 0.16 0.42 0.52 0.58 0.59 0.45 12
3 19.69 13.66 9.84 6.86 5.15 11.04 15
4 0.00 0.06 0.00 0.00 0.11 0.04 5
5 0.00 0.00 0.00 0.00 0.12 0.02 1
6 0.00 0.00 0.00 0.14 0.29 0.09 8
7 0.00 0.00 0.00 0.02 0.11 0.03 3
8 0.00 0.00 0.06 0.14 0.23 0.09 9
9 0.13 0.38 0.69 0.71 0.69 0.52 13
10 20.06 13.52 9.51 6.73 5.19 11.00 14
11 20.16 13.57 9.50 6.93 5.21 11.07 16
12 0.00 0.00 0.15 0.44 0.52 0.22 11
13 0.00 0.00 0.00 0.07 0.13 0.04 6
14 0.00 0.00 0.00 0.08 0.17 0.05 7
15 0.00 0.00 0.00 0.10 0.07 0.04 4
16 0.00 0.00 0.00 0.02 0.11 0.03 2

5. EXPERIMENTAL RESULTS
OR Library present the HDTT-Instances which available on
(http://people.brunel.ac.uk/mastjjb/jeb/orlib/tableinfo.html), the
hdtt refer to the instances are hard timetabling problems as all
periods must be utilized with very little or no options for each
allocation. Each week is comprised of five days with six periods a
day with a total of 30 timetable periods. The proposed algorithm
was implemented in Visual Studio 2010 with C# language. All run
times were measured using an Intel Core 2 Duo with 2.27 GHz
(with the program running on one core only) with 2GB RAM.
The experimental divided into two stages. The first stage is to
determine the fittest mutation type of the 16 mutation types that
are described in section 4 for solving the CTTP, and the second
stage is to compare the proposed algorithm and the other methods.

5.1 First Experiment
While the proposed algorithm is depends only on the mutation op-
eration to reproduce the individuals. So, it is important to discover
the best mutation type of the 16 types of mutation. As the scale of
is different, and they could not be compared directly. Relative Per-
centage Deviation (RPD) is used to compare every instance with
every mutation type. RPD can be compute by using (28).

RPD =
Algsol −Minsol

Minsol

× 100 (28)

Where, Algsol is the solution for a specific run, and Minsol is the
best solution obtained out of a set of runs of a particular instance.
10 runs executed for each instance with each mutation type. The
experiment parameters that are used in the runs are (10) Popula-
tion size, (10000) Generation number and (0.01) hill climbing rate.
RPDs and the average of the RPD of the runs of each instance for
the 16 mutation functions are presented in Table1.
Based on the results presented in Table 1 and the plot in Fig.5,
the mutation function number 5 is providing the minimum value as
compared with the other mutation functions. It followed by muta-
tions number 7 and 16. Since mutations number 11,3,10 and 9 are
providing the largest values. So, the mutation number 5 is selected
to used for solving the CTTP.

Fig. 5. Fitted mean plot for RPD at each mutation function.

5.2 Second Experiment
The proposed algorithm described in section 4 were applied to
solve the five benchmark instances. The parameter values that are
used for solving the CTTP are (10) population size, (20000) gener-
ation number, (0.01) hill climbing rate (HCR). Based on the results
of the first experimental in section 5.1, the proposed algorithm were
applied the mutation number 5.
The proposed algorithm are compared with other literature methods
used to solve the CTTP for the same benchmark instances which
described as follows:
SA1 Simulated annealing algorithm[1].
SA2 Simulated annealing heuristic[17].
TS Tabu Search and GS a Greedy Search are cited in [19].
NN-T2 and NN-T3 A two hopfield neural network methods[19].
DWTAN and CPMF A neural network approaches described in [5].
SA3 A simulated annealing approach developed by Zhang et
al.[20].
TFH Timeslot-filling heuristic and EAH event-assignment heuris-
tic are a two heuristic methods described in [15].

5



International Journal of Computer Applications (0975 - 8887)
Volume 124 - No.10, August 2015

Table 2. Comparative results for the hdtt instances for the proposed algorithm and each method

Method
HDTT4 HDTT5 HDTT6 HDTT7 HDTT8

Best Cost Avg Cost Best Cost Avg Cost Best Cost Avg Cost Best Cost Avg Cost Best Cost Avg Cost
SA1 - - 0.0 0.7 0.0 2.5 2.0 2.5 2.0 2.5
SA2 0.0 0.0 0.0 0.3 0.0 0.8 0.0 1.2 0.0 1.9
TS 0.0 0.2 0.0 2.2 3.0 5.6 4.0 10.9 13.0 17.2
GS 5.0 8.5 11.0 16.2 19.0 22.2 26.0 30.9 29 35.4

NN-TT2 0.0 0.1 0.0 0.5 0.0 0.8 0.0 1.1 0.0 1.4
NN-TT3 0.0 0.5 0.0 0.5 0.0 0.7 0.0 1.0 0.0 1.2
CPMF 5.0 10.7 8.0 13.2 11.0 18.7 18 25.6 15.0 28.6

DWTAN 0.0 0.0 0.0 0.4 0.0 1.65 0.0 2.1 0.0 3.25
SA3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.4
EAH 0.0 0.0 2.0 5.4 6.0 7.9 9.0 12.0 13.0 15.0
TFH 0.0 0.0 0.0 0.6 0.0 2.1 0.0 2.5 0.0 3.1

Proposed Algorithm 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6

Fig. 6. The average number of individuals for the reproduction phase.

Fig. 7. The average CPU seconds over 20 runs for the proposed algorithm.

Fig.6 demonstrates the average number of individuals that the re-
production phase of proposed algorithm requires to get the final
timetable. Fig.7 shows the average CPU processing time of the pro-
posed algorithm, and how the proposed algorithm is fast to generate
the final timetable.

Table 2 compares the performance of the proposed algorithm and
the other methods. The first column indicates the best cost result
achieved, and the avg cost column for the average cost of all runs.
The results show that the proposed algorithm yields a zero cost
value with accepts processing time for all instances. Also, as can
be seen from Table 2 above, the performance of the proposed al-
gorithm is competitive when compared to the other methods, and
performs the best finding timetables for all 20 runs conducted for
each data set.

6. CONCLUSION
The proposed algorithm combining Genetic Algorithm (GA) with
Hill Climbing Optimization (HCO) is described for solving CTTP.
The proposed algorithm is based on the mutation operation of GA
only. The RPD is used to discover the fittest mutation function of
16 mutation functions. The combination of GA and HCO allow to
decrease the number of generation which produced by GA. That is
shown in all artificial hdtt instances, the proposed algorithm gives
optimal solutions with one hundred percentages of fitness function
values within a few seconds. The experiment were design to show
the effectiveness of the proposed algorithm over other approaches
in literature. That insure the proposed algorithm can be added as a
new method for solving CTTPs. The future work will investigate to
solve other timetable problems such as examinations, transporta-
tion and sporting scheduling. The performance of the proposed
algorithm can be improved by release the hill climbing rate be
changeable during the production phase to wide the search space,
which will enhance the quality of the obtained results.

7. REFERENCES
[1] D Abramson and H Dang. School timetables: A case study in

simulated annealing. In Applied simulated annealing, pages
103–124. Springer, 1993.

[2] Ammar M. Ammar, Adel S. Elmaghraby, Mervat H. Gheith,
and Hesham A. Hassan. Multi-agent system for solving
scheduling problem. Master’s thesis, Department of Com-
puter Science and Information, Institute of Statistical Studies
and Research, Cairo University, 2005.

[3] Rakesh P Badoni and DK Gupta. A hybrid algorithm for uni-
versity course timetabling problem. Innovative Systems De-
sign and Engineering, 6(2):60–66, 2015.

[4] Asaju Laaro Bolaji, Ahamad Tajudin Khader, Mo-
hammed Azmi Al-Betar, and Mohammed A Awadallah.

6



International Journal of Computer Applications (0975 - 8887)
Volume 124 - No.10, August 2015

University course timetabling using hybridized artificial bee
colony with hill climbing optimizer. Journal of Computa-
tional Science, 5(5):809–818, 2014.

[5] Marco P Carrasco and Margarida Vaz Pato. A comparison of
discrete and continuous neural network approaches to solve
the class/teacher timetabling problem. European Journal of
Operational Research, 153(1):65–79, 2004.

[6] Ruey-Maw Chen and Hsiao-Fang Shih. Solving univer-
sity course timetabling problems using constriction particle
swarm optimization with local search. Algorithms, 6(2):227–
244, 2013.

[7] M Doulaty, MR Feizi Derakhshi, and M Abdi. Timetabling: A
state-of-the-art evolutionary approach. International Journal
of Machine Learning and Computing, 3(3):255–258, 2013.

[8] Mahmoud M El-Sherbiny and Yasser M Ibrahim. An arti-
ficial immune algorithm with alternative mutation methods:
applied to the student project assignment problem. In Interna-
tional conference on innovation and information management
(ICIIM2012), Chengdu, China, volume 36, pages 149–158,
2012.

[9] Mahmoud Moustafa El-Sherbiny. Alternate mutation based
artificial immune algorithm for step fixed charge transporta-
tion problem. Egyptian Informatics Journal, 13(2):123–134,
2012.

[10] Cheng Weng Fong, Hishammuddin Asmuni, Barry McCol-
lum, Paul McMullan, and Sigeru Omatu. A new hybrid im-
perialist swarm-based optimization algorithm for university
timetabling problems. Information Sciences, 283:1–21, 2014.

[11] Michel Gendreau and Jean-Yves Potvin. Metaheuristics in
combinatorial optimization. Annals of Operations Research,
140(1):189–213, 2005.

[12] Zhipeng Lü and Jin-Kao Hao. Adaptive tabu search for
course timetabling. European Journal of Operational Re-
search, 200(1):235–244, 2010.

[13] Alade O Modupe, Omidiora E Olusayo, and Olabiyisi S
Olatunde. Development of a university lecture timetable using
modified genetic algorithms approach. International Journal,
4(9):163–168, 2014.

[14] Antony E Phillips, Hamish Waterer, Matthias Ehrgott, and
David M Ryan. Integer programming methods for large-scale
practical classroom assignment problems. Computers & Op-
erations Research, 53:42–53, 2015.

[15] Michael Pimmer and Günther R Raidl. A timeslot-filling
heuristic approach to construct high-school timetables. In Ad-
vances in Metaheuristics, pages 143–157. Springer, 2013.

[16] Rushil Raghavjee and Nelishia Pillay. A comparison of ge-
netic algorithms and genetic programming in solving the
school timetabling problem. In Nature and Biologically In-
spired Computing (NaBIC), 2012 Fourth World Congress on,
pages 98–103. IEEE, 2012.

[17] Marcus Randall and David Abramson. A general meta-
heuristic based solver for combinatorial optimisation
problems. Computational optimization and applications,
20(2):185–210, 2001.

[18] Khalid Shaker and Salwani Abdullah. Incorporating great del-
uge approach with kempe chain neighbourhood structure for
curriculum-based course timetabling problems. In Data Min-
ing and Optimization, 2009. DMO’09. 2nd Conference on,
pages 149–153. IEEE, 2009.

[19] Kate A Smith, David Abramson, and David Duke. Hop-
field neural networks for timetabling: formulations, methods,
and comparative results. Computers & industrial engineering,
44(2):283–305, 2003.

[20] Defu Zhang, Yongkai Liu, Rym MHallah, and Stephen CH
Leung. A simulated annealing with a new neighbor-
hood structure based algorithm for high school timetabling
problems. European Journal of Operational Research,
203(3):550–558, 2010.

7


	Introduction
	Problem Definition
	Hard Constraints
	Soft Constraints
	Fitness Function

	Solution Representation
	Index Encoding
	Index Decoding

	The proposed algorithm
	Initial Population
	Evaluating Fitness Function
	Reproduction
	Hill Climbing Optimization (HCO)

	Experimental Results
	First Experiment
	Second Experiment

	Conclusion
	References

