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ABSTRACT 
The impact of missing RR-interval data on nonlinear heart 

rate variability (HRV) analysis with and without interpolation 

were investigated. In this  study, randomly selected data (with 

frequency of 5 samples up to 50) were removed from actual 

data (taking first 1000 samples) in the MIT-BIH  arrhythmia 

RR interval database of 10 subjects having 1000 sample data 

points in each set. In all, the tachograms the artefacts are 

removed first from the 1000 samples. Poincare plot and 

entropy analysis were executed for the nonlinear HRV 

parameters, and the absolute relative errors between the data 

with and without the missing data duration for these 

parameters including the interpolation were calculated. In this 

process, the usefulness of reconstruction was considered when 

there is missed rr-interval, for which several interpolation 

methods (linear, delete, and zero order interpolation) were 

used and the best interpolation method having less error in the 

HRV analysis was chosen. During the work and performing 

all the interpolation methods, the delete interpolation gives 

best results for the reconstruction of data while analysing the 

HRV non-linear parameters. 
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1. INTRODUCTION 
Heart rate variability (HRV) parameters can be affected by 

missing RR-interval data which can be produced by motion 

artifacts or other electronic or mechanical external stimuli. 

Previous works in this field has compared the frequency 

domain, time domain and non-linear domain of the HRV with 

and without reconstruction [1]. In this work, representative 

nonlinear approaches to HRV analysis (Poincare plot and 

entropy analysis) are investigated in order to understand the 

effect of missing data and reconstructed data through 

interpolation. The non-linear parameters were studied as they 

are very essential tools which depicts the irregularities 

graphically and also due to the ease of finding those 

irregularities on graph. In these simulations, several 

reconstruction methods for missing RR-interval data are used 

and the best method for each nonlinear parameter is selected 

[2]. 

This paper is organized as follows: definitions of the nonlinear 

HRV parameters used in this study and the clinical research 

for each parameter are briefly described in Section 2. In 

Section 3, explanations are offered for the processes by which 

the RR-interval data used for the missing data interpolation 

was obtained. In section 4, the methodology and database 

used is discussed and flowchart is provided for the 

methodology used and then the results for each nonlinear 

parameter are compared. Finally, the impact of missing RR-

interval data is thoroughly discussed in Section 5. 

2. NONLINEAR HRV PARAMETERS 

2.1 Poincare plot analysis 

 Poincare plot analysis (PPA) method is a useful visual tool to 

assess the dynamics of HRV by representing the 

characteristics of time series fluctuation, a technique which is 

based on nonlinear dynamics. In this form of geometrical 

analysis, the successive values of RR-interval data are 

scattered as points for each pair [3]. The standard deviation 

along the major axis (SD2) of the data and the standard 

deviation along the minor axis (SD1) can be obtained by the 

following calculations: 

  SD1 =      
 

 
     

 

 
                        …2.1 

  SD2 =      
 

 
     

 

 
                       …2.2 

where RRn is a time series of RR-interval data with a 

heartbeat number n = 1,2,. . .N−1. SD1 represents the short-

term RR interval variability, and is known to be related to the 

HRV parameter in the time domain, SDSD [1]. As the long-

term variability of the RR-interval, SD2 can be obtained in the 

PPA and it can also be expressed by the combination of SDSD 

and SDNN, which is another HRV parameter in the time 

domain. Some studies have considered that the parameters of 

SD1 and SD2 can be used as prognostic indices of certain 

diseases or as indices that reflect the autonomic state. In 

patients with chronic renal failure, it has been reported that the 

PPA parameters are smaller than those in healthy subjects [7]. 

Studies have shown that endurance exercise causes the PPA 

parameters to be increased by the progressive activation of the 

parasympathetic nervous system, so the widths of the Poincare 

plot can be used as replacement indices for linear HRV 

parameters to assess changes in that system [9]. Moreover, 

PPA has been applied to research regarding patients with 

depressed left ventricular function after an acute myocardial 

infarction, diabetic subjects, and patients with dilated 

cardiomyopathy [7]. 

2.2 Approximate and sample entropy 

Approximate entropy (ApEn) eq.2.3, a parameter which 

indicates the rate of entropy, measures the likelihood through 

incremental comparisons between data patterns of a certain 

length m and the remaining data [5]. The lower values of 
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ApEn indicate a higher degree of regularity in the time series. 

ApEn is calculated as follows:  

1. From m vectors X (1) to X (N-m+1) defined by 

         11,1,....1,  mNimiuiuiuiX
 

                                                                                    …2.3 

2. Define the distance     jXiXd ,  between the 

vectors  iX and  jX  as the maximum absolute 

difference their respective scalar components : 

              kjukiujXiXd
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4. Take the natural logarithm of each ( )m

ic r  and average it 

over i 
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5. Increase the m to m+1 and repeat the steps 1 to 4 and 

find  
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6. Finally calculate ApEn for the data of length of N 

   
     rrNrmApEn mm 1,, 

                 
…2.8 

 

Sample entropy (SampEn) eq.2.8, is a parameter developed to 

reduce the bias by introducing self-matching count, to 

compensate for the shortcoming of ApEn [9]. This requires a 

simpler algorithm than ApEn and is significantly independent 

of data length [6]. SampEn can be obtained as follows:  

 

1. For  m vectors    11 mNtoXX defined by, 

         11,1,.....1,  mNimiuiuiuiX
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2. Define the distance     jXiXd ,                                                                    
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5. Finally SampEn for a finite length of N can be taken as 
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3. RECONSTRUCTION USING  

INTERPOLATION 
Reconstruction is a process of inserting the predicted value in 

the actual missed dataset. Reconstruction has been performed 

by using different interpolation techniques. Interpolation is the 

way to constructing new data points within the range of the 

series [4]. The nearest neighbour, linear, cubic spline, and 

piecewise cubic Hermite (PCH) are the different interpolation 

methods and these interpolation processes has different 

algorithms of reconstruction. The difference in these 

interpolation methods while using the interp1 is shown in the 

fig2 and fig3. As it is evident that the higher order derivative 

for the methods becomes zero while using Nearest neighbor, 

Spline, PCH respectively. Therefore the difference between 

these interpolation techniques can only be seen in graphs. In 

this study, the interpolation used is Linear, zero interpolation 

and delete interpolation. 

Linear interpolation technique is used with the inbuilt function 

(interp1). This interpolation technique comes in the category 

1D interpolation. For the large value of data set the 

interpolation results are better as compared to the small valued 

dataset. [8]. Zero interpolation reconstructs the missed data 

value by taking the mean of the previous three values of the 

respective missed point. Delete interpolation practically does 

not incorporate any reconstruction as it only synthesis the 

missed data as it is. Suppose if there is an actual data of 1000 

data points and if five points are randomly missed then delete 

interpolation will synthesis the remaining 995 points and 

gives the corresponding values where as in the other two 

interpolation techniques the 995 points are reconstructed back 

to 1000.  
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Fig 1: Showing Linear Interpolation 

 

Fig 2: Showing Spline Interpolation 

4. DATA AND METHODOLOGY 
Data is obtained from www.Physionet.org of the 10 subjects 

of MIT-BIH Arrhythmia database. The data should be artefact 

free so as to obtain the smooth variations in the results. The 

artefact free data was processed in which random samples 

were removed with the frequency of 5 samples up to 50 

samples and on those missed values the interpolation is done. 

To get the data with some missed values, the data has been 

randomly missed with the frequency of 5 data points up to 50 

data points in the original data of 1000 samples and then with 

different interpolation the data is reconstructed back and 

compared. The nonlinear parameters were calculated for all 

the data sets and all the missed and interpolated values. After 

taking the averages the absolute relative error w.r.t. actual data 

was taken and graphs were plotted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                      

                                        

  Fig 3: Depicting Methodology 

5. RESULTS AND DISCUSSION 
ApEn is known as the entropy parameter that is affected by 

the sample number and that includes the errors found between 

the estimation and theoretically predicted values. SampEn is 

therefore recommended when the sample number is small 

because of the independence on the number. Since the number 

of RR-interval data used in the simulation study does not 

exceed about 1000 samples, ApEn is considered to include 

some errors. These errors are considered to affect the errors 

from the missing data, and it is observed that ApEn is much 

more robust than SampEn in all the cases of interpolation. 

In the actual missing data results, as shown in Fig. 5, the 

variation patterns of ApEn and SampEn differ from each 

other. Though the MATLAB functions for these were verified 

through additional tests on the different data sets, precise 

entropy values were returned for each parameter. It is 

therefore caused by the fact that the random nature of deletion 

incorporated in the process. 

The values of SD1 and SD2 obtained are almost similar as the 

values are coming in the specific range but for different 

interpolation techniques the error is coming out to be different 

that means that if in case of SD1 the maximum error occurring 

is in the linear interpolation by using the interp1 function and 

minimum error is in the zero interpolation then for the same 

conditions and values the maximum and minimum error in the 

SD2 is occurring for the zero interpolation and delete 

interpolation respectively. 

6. CONCLUSION AND FUTURE SCOPE 
For the parameters SD1, SD2, Apen and Sampen the results 

are shown in fig.4, 5, 6, and 7. The Missed RR-Intervals has 

been reconstructed using various interpolation techniques. The 

frequency of missed intervals increases with a factor of 5 

samples up to 50 samples in the dataset of 1000 samples that 

means insertion of data with interpolation is increasing with 

the factor of 5 samples in the final reconstructed data except 

delete interpolation. The robust technique that has been found 

for reconstructing a dataset which has random missed points is 

Data Selected 

(Arrhythmia) 

Artefacts  Removed 

Random Missed 

Find Location (i) of 

missed points  

Interpolate at i 

Record Nonlinear 

Parameters  

Find Error 
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delete interpolation. This is also concluded that for the three 

interpolation techniques discussed less error is present as 

compared to original data if the data is used as it is without 

reconstruction. This has been proved in the below figures 

4,5,6,7 as when incorporating no interpolation techniques the 

absolute relative error is coming less for the average of 10 

subjects in Poincare and entropy values as compared to the 

other interpolation techniques used namely linear and zero 

interpolation with one exception for SD1. Future scope of this 

work is very wide as during clinical usage by physicians the 

corrupt data can be avoided if there can be made a GUI 

showing non-linear parameters which can compare the 

original RR-Interval data with the new data. Also the analysis 

can be done for the grouped missed values in the rr-interval. 
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8. APPENDIX 

Fig 4: Showing Error in SD1 for different interpolation techniques 
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Fig 5: Showing Error in SD2 for different interpolation technique 

 

 

 

Fig 6: Showing Error in ApEn for different interpolation technique 
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Fig 7: Showing Error in SampEn for different interpolation technique 
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