A Novel Hybrid Multi–objective BB–BC based Channel Allocation Algorithm to Reduce FWM Crosstalk and its Comparative Study

Suruchi Bali Department of Electronics and Communication Engineering Seth Jai Parkash Mukand Lal Institute of Engineering and Technology, Radaur, India Shonak Bansal Department of Electronics and Communication Engineering PEC University of Technology, Sector-12, Chandigarh, India Anil Kamboj Department of Electronics and Communication Engineering Seth Jai Parkash Mukand Lal Institute of Engineering and Technology, Radaur, India

ABSTRACT

Nature is a good source of inspirations for us. The algorithms developed from the nature are most powerful algorithms for optimizing many complex engineering design problems having multiple objectives (multi-objective). This paper presents an hybrid algorithm based on Multi-objective Big bang-Big Crunch (MOBB-BC) nature-inspired optimization algorithm with Genetic crossover and Differential evolution (DE) mutation operators for solving the minimum length ruler called Optimal Golomb ruler (OGR) as channel-allocation problem to reduce four-wave mixing crosstalk (FWM) effects in optical wavelength division multiplexing (WDM) systems. The comparative study of simulation results obtained by proposed hybrid Multi-objective BB-BC (HMOBB-BC) algorithm demonstrates better and efficient generation of OGRs in a reasonable computational time compared to simple BB-BC algorithm and one of the existing nature-inspired algorithms i.e. Genetic algorithm (GA). Also, the proposed hybrid algorithm outperforms the two existing conventional algorithms i.e. Extended quadratic congruence (EOC) and Search algorithm (SA), in terms of ruler length and total channel bandwidth.

General Terms

Conventional computing, Four-wave mixing, Multi-objective, Nature-inspired, Optimization.

Keywords

Channel spacing, Genetic algorithm, Hybrid Multi–objective Big bang–Big Crunch optimization algorithm, Optimal Golomb ruler.

1. INTRODUCTION

Crosstalk due to four–wave mixing (FWM) is the dominant nonlinear effect in a multi–channel long haul optical communication fiber system which limits the performance of optical wave length division multiplexing (WDM) system. It is therefore important to develop algorithms to allocate the channel frequencies in order to reduce the FWM crosstalk [1]–[6].

There is several unequally spaced channel–allocation algorithms have been proposed [2], [7]–[14] which have the drawback of increased optical channel bandwidth requirement compared to equally spaced channel allocation. This paper proposes a nature–inspired based unequally spaced channel

algorithm by using the concept of Optimal Golomb ruler (OGR) sequences [15]–[17].

By using OGRs as channel-allocation, reduction in FWM crosstalk can be achieved in the optical WDM systems without affecting total optical channel bandwidth. Golomb rulers represent a class of NP-complete [18] problem. Several different algorithms are proposed to solve Golomb ruler problem such as exact methods [19], [20], constraint programming [21], local searches [22] and exhaustive parallel search [23]. There are various nature-inspired based algorithms such as Genetic algorithm (GA) [24]-[28], Biogeography Based Optimization (BBO) [28]-[30], Big Bang-Big Crunch (BB-BC) algorithm [31], [32], Firefly algorithm (FA) [33], Cuckoo search based algorithm (CSA) [34], and Multi-objective flower pollination algorithm (MOFPA) and its hybridization form [35] to solve the OGRs problem. This paper introduces two concepts i.e. hybridization and multi-objective in simple BB-BC optimization algorithm to solve unequally spaced channel-allocation problem in optical WDM system. The hybridization of BB-BC algorithm is done with Genetic crossover and Differential Evolution mutation operator. The purpose of hybridization is to improve the convergence rate and precision of BB-BC algorithm. Then formed hybrid BB-BC algorithm is extended to multiobjective optimization problems by using a Pareto-based approach [36], [37]. Both these concepts are combined in order to generate OGR sequences for various marks or optical WDM's channels.

This paper has following sections: Section 2 introduces the brief concept of Golomb rulers. Section 3 introduces with hybrid Multi-objective BB–BC nature–inspired optimization algorithm. Section 4 presents the problem formulation. Section 5 presents the simulation results and performance comparison of proposed algorithm and Section 6 presents the conclusion and future scope of the research.

2. GOLOMB RULERS

Golomb ruler refers to a set of positive integers named as *marks* and no distinct pairs of numbers from the set have the same difference [38]–[40]. The difference between the values of any two marks is called the *distance* between those marks. The difference between the largest and smallest number is referred to as the *length* of the ruler. The number of marks on a ruler is referred to as the *size* of the ruler.

Fig1: A 5–Marks non–OGR having Ruler Length 12with its associated distances

A *perfect Golomb ruler* measures all the non–negative integer distances from 0 to length L of the ruler [40]–[43]. An *optimal Golomb ruler* is the shortest length ruler for a given mark. There can be numerous different OGRs for a specific marks value. Figure 1 show an example of 5–marks non– optimal Golomb ruler having ruler length 12. The distance associated between each pair of marks is also shown in Figure 1. As clear from Figure 1 that the distance numbers 8 and 10 are missing so it is not a perfect Golomb ruler sequence.

3. HYBRID MULTI-OBJECTIVE BIG BANG-BIG CRUNCH ALGORITHM

Big Bang-Big Crunch algorithm, a meta-heuristic population-based optimization algorithm relies on the theories of the evolution of universe; called the Big Bang and Big Crunch theory [44]-[46]. It states us that the Universe's expansion is due to the Big Bang and will not continue forever. Instead, at a certain point in time, it will stop expanding and collapse into itself, pulling everything with it until it eventually turns into the biggest black hole ever. Erol and Eksin [47], inspired by these theories, introduced an optimization algorithm named Big Bang-Big Crunch optimization algorithm. This algorithm has two phases: the first phase is Big Bang phase and the second phase is Big Crunch phase where a contraction procedure calculates a center of mass for the population [48], [49]. These two phases represent the best solution exploitation and large search space exploration, respectively. The first phase (energy dissipation) randomly generates an initial population of feasible candidate solutions. Generally, this phase represents the search space exploration process. After the Big Bang phase, a contraction procedure is applied during the Big Crunch. This aims to have quick convergence and reduce computational time, while maintaining the quality of solutions and search diversity. The best candidate solution is represented as the centre of mass that will attract other solutions. In the Big Crunch phase, the contraction operator takes the current positions of each candidate solution in the population and its associated fitness/cost function value and computes a centre of mass according to the equation (1) [47]:

$$x_{c} = \frac{\frac{Popsize}{\sum} \frac{1}{f_{i}} x_{i}}{\frac{Popsize}{\sum} \frac{1}{F_{i}}}$$
(1)

where, x_c is position of the centre of mass, x_i is position of the candidate, f_i is fitness (cost) function value of the candidate *i*; and *Popsize* is the population size.

Instead of the centre of mass, best fit individual can also be chosen as the starting point in the Big Bang phase. The new candidates (x_{new}) around the centre of mass are calculated by subtracting or adding a normal random number whose value decreases as the iterations elapse. This can be formalized by the equation (2):

$$x_{new} = x_c + r \times c_1 \times \frac{(x_{\max} - x_{\min})}{1 + t/c_2}$$
(2)

where *r* is a standard normal distribution random number, c_1 is a limiting the size parameter of the search space, parameter c_2 denotes after how much iteration the search space will be restricted to half, x_{max} and x_{min} are the upper and lower limits, and *t* is the iteration index.

Although the algorithm, BB–BC has exceptional property as compared to numerous nature–inspired optimization algorithms while solving lower–dimensional optimization design problems, but may become challenging for higher– dimensional optimization design problems because of the phenomenon of slow convergence and low accuracy rates. This means there are some problems in the global exploitation and exploration of the search space.

Therefore, this paper forward an improved hybrid BB–BC with multiple objectives, namely, HMOBB–BC, that relies on Genetic crossover [50] and fitness values based differential mutation strategy [51], [52] to accelerate the convergence speed of multi–objective BB–BC (MOBB–BC) algorithm. A multi–objective optimization problem with M objectives can be written in general as [37]:

Maximize/Minimize $f_1(x), f_2(x), ..., f_M(x)$

subject to the non-linear equality and inequality constraints.

 $h_j(x) = 0, (j = 1, 2, ..., J) \text{ and } g_k(x) \ge 0, (k = 1, 2, ..., K).$

One of the simplest ways is to use a weighted sum to combine multi–objective into a composite single objective is given by equation (3) [37]:

$$f = \sum_{m=1}^{M} w_m f_m \tag{3}$$

with
$$\sum_{i=1}^{M} w_i = 1, \qquad w_i > 0 \tag{4}$$

where $w_i(i = 1, ..., M)$ are randomly generated non-negative weights.

The fundamental idea of this weighted sum approach is that these weighting coefficients act as the preferences for these multi-objectives [37].

In proposed HMOBB–BC, algorithm the mutation rate probability MR_i^t of each solution x_i at running iteration index t

is determined based on the fitness value f_i^t of each solution:

$$MR_i^t = \frac{f_i^t}{Max(f^t)} \tag{5}$$

where $Max(f^{t})$ is maximum fitness value in the population of solutions at iteration *t*.

In order to improve the search efficiency and increase the population diversity, based on the mutation rate probability the positions of the candidates x_i (solutions) are updated by using the "*DE/rand*/1" [52] mutation equation (6):

$$x_i^t = x_{r_1}^{t-1} + P_{mutate}(x_{r_2}^{t-1} - x_{r_3}^{t-1})$$
(6)

/* Big Bar		
	ng Phase */	
Defi	ne Pareto front points N and objective functions $f_1(x), \dots, f_M(x)$,	$x = (x_1, \dots, x_d)^T;$
Gen	erate populations of NP candidates randomly;	
Gen	erate <i>M</i> weights $W > 0$ so that equation (4) is satisfies;	
E	$m_m = 0$	
FOII	in a single objective by using equation (5);	
Bas	ed on fitness value, find the global best solution x -among the po	pulation of NP candidates;
/* End of I	Sig Bang Phase */	
For $i = 1$:	N	
Genera	te M weights randomly which satisfies equation (4);	
While	not TC	/* TC is a termination criterion */
/* B	ig Crunch Phase */	
	Compute the center of mass. Either the best fit individual or the	he center of mass is chosen as the point of Big Bang phase;
/* E	nd of Big Crunch Phase */	
/* B	ig Bang Phase */	
	Calculate new candidates around the center of mass by adding	or subtracting a normal random number whose value decreases as the
	iterations elapse by using equation (2):	
/* F	nd of Big Bang Phase */	
/* (rossover */	
/ •	Apply crossover operator with probability based on crossover	rate P
/* I	End of crossover */	
/* N	Autation*/	
	Based upon the mutation rate probability MR (equation 5) perfe	orm mutation by using equation (6);
/* E	nd of mutation */	
R	e-evaluate fitness values of all the generated candidates;	
R	ank the candidates and find the global best Pareto front solutior	x * solutions;
End w	nile	
Record	x_* as a non-dominated solution;	
End for <i>i</i>	,	
Postproces	s the results and visualization.	
d d	s the results and visualization,	
ILL I		
	Fig 2: Pseudo-code for Hybrid Multi-obje	ctive Big Bang–Big Crunch Algorithm
egin	Fig 2: Pseudo-code for Hybrid Multi-obje	ctive Big Bang–Big Crunch Algorithm
egin /* Big B	Fig 2: Pseudo-code for Hybrid Multi-obje	ctive Big Bang–Big Crunch Algorithm
egin /* Big B	Fig 2: Pseudo–code for Hybrid Multi-obje ang Phase */ ititalize number of channels <i>n</i> , upper bound on the ruler length	and Pareto fronts point <i>N</i> ;
egin /* Big B Ir G	Fig 2: Pseudo–code for Hybrid Multi-obje ang Phase */ itialize number of channels <i>n</i> , upper bound on the ruler length enerate a random set of <i>NP</i> candidates (integer population) corr	and Pareto fronts point <i>N</i> ; responding to Golomb ruler to the specified channels; ** Number of integers in candidates is equal to the number of channels *
egin /* Big B Ir G Ba	Fig 2: Pseudo–code for Hybrid Multi-obje ang Phase */ itialize number of channels <i>n</i> , upper bound on the ruler length a enerate a random set of <i>NP</i> candidates (integer population) corrested on fitness value, find the global best solution <i>x</i> -among the r	and Pareto fronts point <i>N</i> ; responding to Golomb ruler to the specified channels; /* Number of integers in candidates is equal to the number of channels *.
egin /* Big B Ir G Ba /* End of	Fig 2: Pseudo–code for Hybrid Multi-obje ang Phase */ itialize number of channels <i>n</i> , upper bound on the ruler length <i>i</i> enerate a random set of <i>NP</i> candidates (integer population) corr sed on fitness value, find the global best solution <i>x</i> -among the p Big Bang Phase */	and Pareto fronts point <i>N</i> ; responding to Golomb ruler to the specified channels; /* Number of integers in candidates is equal to the number of channels * opulation of <i>NP</i> candidates;
egin /* Big B Ir G Ba /* End of For i = 1	Fig 2: Pseudo–code for Hybrid Multi-obje ang Phase */ ititalize number of channels <i>n</i> , upper bound on the ruler length <i>i</i> enerate a random set of <i>NP</i> candidates (integer population) corr sed on fitness value, find the global best solution <i>x</i> -among the p Big Bang Phase */	and Pareto fronts point <i>N</i> ; responding to Golomb ruler to the specified channels; /* Number of integers in candidates is equal to the number of channels * opulation of <i>NP</i> candidates;
egin /* Big B Ir G Ba /* End of For i = 1 Ge	Fig 2: Pseudo–code for Hybrid Multi-obje ang Phase */ ititalize number of channels <i>n</i> , upper bound on the ruler length <i>i</i> enerate a random set of <i>NP</i> candidates (integer population) corr sed on fitness value, find the global best solution <i>x</i> -among the p Big Bang Phase */ : <i>N</i> nerate <i>M</i> weights randomly which satisfies equation (4):	and Pareto fronts point <i>N</i> ; responding to Golomb ruler to the specified channels; /* Number of integers in candidates is equal to the number of channels *, opulation of <i>NP</i> candidates;
egin /* Big B Ir G Ba /* End of For i = 1 Ge	Fig 2: Pseudo–code for Hybrid Multi-obje ang Phase */ ititalize number of channels <i>n</i> , upper bound on the ruler length <i>i</i> enerate a random set of <i>NP</i> candidates (integer population) corr sed on fitness value, find the global best solution <i>x</i> -among the p Big Bang Phase */ : <i>N</i> nerate <i>M</i> weights randomly which satisfies equation (4); <i>(bile not TC</i>)	and Pareto fronts point <i>N</i> ; responding to Golomb ruler to the specified channels; /* Number of integers in candidates is equal to the number of channels *, opulation of <i>NP</i> candidates;
egin /* Big B Ir G Ba /* End of For i = 1 Ge V	Fig 2: Pseudo–code for Hybrid Multi-obje ang Phase */ ititalize number of channels <i>n</i> , upper bound on the ruler length <i>i</i> enerate a random set of <i>NP</i> candidates (integer population) corr sed on fitness value, find the global best solution <i>x</i> -among the p Big Bang Phase */ : <i>N</i> nerate <i>M</i> weights randomly which satisfies equation (4); // Big Crunch Phase */	and Pareto fronts point <i>N</i> ; responding to Golomb ruler to the specified channels; /* Number of integers in candidates is equal to the number of channels *, opulation of <i>NP</i> candidates; /* <i>TC</i> is a termination criterion *,
egin /* Big B Ir G Ba /* End of For i = 1 Ge V	Fig 2: Pseudo–code for Hybrid Multi-obje ang Phase */ ititalize number of channels <i>n</i> , upper bound on the ruler length <i>i</i> enerate a random set of <i>NP</i> candidates (integer population) corr sed on fitness value, find the global best solution <i>x</i> -among the p Big Bang Phase */ : <i>N</i> nerate <i>M</i> weights randomly which satisfies equation (4); /hile not <i>TC</i> /* Big Crunch Phase */ Compute the center of mass:	and Pareto fronts point <i>N</i> ; responding to Golomb ruler to the specified channels; /* Number of integers in candidates is equal to the number of channels *, opulation of <i>NP</i> candidates; /* <i>TC</i> is a termination criterion *, /* The best fit individual is chosen as the center of mass *
egin /* Big B Ir G Ba /* End of For i = 1 Ge V	Fig 2: Pseudo-code for Hybrid Multi-obje ang Phase */ ititalize number of channels <i>n</i> , upper bound on the ruler length i enerate a random set of <i>NP</i> candidates (integer population) corn sed on fitness value, find the global best solution <i>x</i> *among the p Big Bang Phase */ : <i>N</i> nerate <i>M</i> weights randomly which satisfies equation (4); /hile not <i>TC</i> /* Big Crunch Phase */ Compute the center of mass; /* End of Big Crunch Phase */	and Pareto fronts point <i>N</i> ; responding to Golomb ruler to the specified channels; /* Number of integers in candidates is equal to the number of channels * opulation of <i>NP</i> candidates; /* <i>TC</i> is a termination criterion * /* The best fit individual is chosen as the center of mass *
egin /* Big B Ir G Ba /* End of For <i>i</i> = 1 Ge V A:	Fig 2: Pseudo-code for Hybrid Multi-obje ang Phase */ itialize number of channels <i>n</i> , upper bound on the ruler length <i>i</i> enerate a random set of <i>NP</i> candidates (integer population) corr sed on fitness value, find the global best solution <i>x</i> *among the p Big Bang Phase */ : <i>N</i> nerate <i>M</i> weights randomly which satisfies equation (4); /hile not <i>TC</i> /* Big Crunch Phase */ Compute the center of mass; /* End of Big Crunch Phase */ Calculate new candidate around the center of mass by add	and Pareto fronts point <i>N</i> ; responding to Golomb ruler to the specified channels; /* Number of integers in candidates is equal to the number of channels * opulation of <i>NP</i> candidates; /* <i>TC</i> is a termination criterion * /* The best fit individual is chosen as the center of mass * ing or subtracting a normal random number whose value decreases as th
egin /* Big B Ir G Ba /* End of For i = 1 Ge V A:	Fig 2: Pseudo-code for Hybrid Multi-obje ang Phase */ itialize number of channels <i>n</i> , upper bound on the ruler length <i>i</i> enerate a random set of <i>NP</i> candidates (integer population) corr sed on fitness value, find the global best solution <i>x</i> -among the p Big Bang Phase */ : <i>N</i> nerate <i>M</i> weights randomly which satisfies equation (4); /hile not <i>TC</i> /* Big Crunch Phase */ Compute the center of mass; /* End of Big Crunch Phase */ Calculate new candidate around the center of mass by add iterations elapse by using equation (2);	and Pareto fronts point <i>N</i> ; responding to Golomb ruler to the specified channels; /* Number of integers in candidates is equal to the number of channels * opulation of <i>NP</i> candidates; /* <i>TC</i> is a termination criterion * /* The best fit individual is chosen as the center of mass * ing or subtracting a normal random number whose value decreases as th /* Big Bang Phase *
egin /* Big B Ir G Ba /* End of For i = 1 Ge V A:	Fig 2: Pseudo-code for Hybrid Multi-obje ang Phase */ itialize number of channels <i>n</i> , upper bound on the ruler length <i>i</i> enerate a random set of <i>NP</i> candidates (integer population) correst sed on fitness value, find the global best solution <i>x</i> -among the p Big Bang Phase */ : <i>N</i> nerate <i>M</i> weights randomly which satisfies equation (4); /hile not <i>TC</i> /* Big Crunch Phase */ Compute the center of mass; /* End of Big Crunch Phase */ Calculate new candidate around the center of mass by add iterations elapse by using equation (2); /* Crossover */	and Pareto fronts point <i>N</i> ; esponding to Golomb ruler to the specified channels; /* Number of integers in candidates is equal to the number of channels * opulation of <i>NP</i> candidates; /* <i>TC</i> is a termination criterion * /* The best fit individual is chosen as the center of mass * ing or subtracting a normal random number whose value decreases as th /* Big Bang Phase *
egin /* Big B Ir G Ba /* End of For i = 1 Ge V A:	Fig 2: Pseudo-code for Hybrid Multi-obje ang Phase */ itialize number of channels <i>n</i> , upper bound on the ruler length <i>i</i> : enerate a random set of <i>NP</i> candidates (integer population) corresed sed on fitness value, find the global best solution <i>x</i> -among the p Big Bang Phase */ : <i>N</i> nerate <i>M</i> weights randomly which satisfies equation (4); /hile not <i>TC</i> /* Big Crunch Phase */ Compute the center of mass; /* End of Big Crunch Phase */ Calculate new candidate around the center of mass by add iterations elapse by using equation (2); /* Crossover */ Apply crossover operator with probability based on a	and Pareto fronts point <i>N</i> ; esponding to Golomb ruler to the specified channels; /* Number of integers in candidates is equal to the number of channels * opulation of <i>NP</i> candidates; /* <i>TC</i> is a termination criterion * /* The best fit individual is chosen as the center of mass * ing or subtracting a normal random number whose value decreases as th /* Big Bang Phase * crossover rate <i>P</i> _{cross} ;
egin /* Big B Ir G Ba /* End of For i = 1 Ge V A:	Fig 2: Pseudo-code for Hybrid Multi-obje ang Phase */ itialize number of channels <i>n</i> , upper bound on the ruler length is enerate a random set of <i>NP</i> candidates (integer population) corresed on fitness value, find the global best solution <i>x</i> -among the p Big Bang Phase */ : <i>N</i> nerate <i>M</i> weights randomly which satisfies equation (4); /hile not <i>TC</i> /* Big Crunch Phase */ Compute the center of mass; /* End of Big Crunch Phase */ Calculate new candidate around the center of mass by add iterations elapse by using equation (2); /* Crossover */ Apply crossover operator with probability based on /* End of crossover */	and Pareto fronts point N ; esponding to Golomb ruler to the specified channels; * Number of integers in candidates is equal to the number of channels * opulation of NP candidates; /* TC is a termination criterion * /* The best fit individual is chosen as the center of mass * ing or subtracting a normal random number whose value decreases as th /* Big Bang Phase * crossover rate P_{cross} ;
egin /* Big B Ir G Ba /* End of For i = 1 Ge V A:	Fig 2: Pseudo-code for Hybrid Multi-obje ang Phase */ itialize number of channels <i>n</i> , upper bound on the ruler length is enerate a random set of <i>NP</i> candidates (integer population) corre- sed on fitness value, find the global best solution <i>x</i> -among the p Big Bang Phase */ : <i>N</i> nerate <i>M</i> weights randomly which satisfies equation (4); /hile not <i>TC</i> /* Big Crunch Phase */ Compute the center of mass; /* End of Big Crunch Phase */ Calculate new candidate around the center of mass by add iterations elapse by using equation (2); /* Crossover */ Apply crossover operator with probability based on a /* End of crossover */ /* Mutation*/	and Pareto fronts point N ; esponding to Golomb ruler to the specified channels; * Number of integers in candidates is equal to the number of channels * opulation of NP candidates; /* TC is a termination criterion * /* The best fit individual is chosen as the center of mass * ing or subtracting a normal random number whose value decreases as th /* Big Bang Phase * crossover rate P_{cross} ;
egin /* Big B Ir G Ba /* End of For i = 1 Ge V A:	Fig 2: Pseudo-code for Hybrid Multi-obje ang Phase */ itialize number of channels <i>n</i> , upper bound on the ruler length is enerate a random set of <i>NP</i> candidates (integer population) corre- sed on fitness value, find the global best solution <i>x</i> -among the p Big Bang Phase */ : <i>N</i> nerate <i>M</i> weights randomly which satisfies equation (4); /hile not <i>TC</i> /* Big Crunch Phase */ Compute the center of mass; /* End of Big Crunch Phase */ Calculate new candidate around the center of mass by add iterations elapse by using equation (2); /* Crossover */ Apply crossover operator with probability based on of /* End of crossover */ /* Mutation*/ Based upon the mutation rate probability <i>MR</i> (equation	and Pareto fronts point N ; esponding to Golomb ruler to the specified channels; * Number of integers in candidates is equal to the number of channels * opulation of NP candidates; /* TC is a termination criterion * /* The best fit individual is chosen as the center of mass * ing or subtracting a normal random number whose value decreases as th /* Big Bang Phase * crossover rate P_{cross} ; on 5)perform mutation by using equation (6);
egin /* Big B Ir G Ba /* End of For i = 1 Ge V A:	Fig 2: Pseudo-code for Hybrid Multi-obje ang Phase */ itialize number of channels <i>n</i> , upper bound on the ruler length is enerate a random set of <i>NP</i> candidates (integer population) corre- sed on fitness value, find the global best solution <i>x</i> -among the p Big Bang Phase */ : <i>N</i> nerate <i>M</i> weights randomly which satisfies equation (4); /hile not <i>TC</i> /* Big Crunch Phase */ Compute the center of mass; /* End of Big Crunch Phase */ Calculate new candidate around the center of mass by add iterations elapse by using equation (2); /* Crossover */ Apply crossover operator with probability based on a /* End of crossover */ /* Mutation*/ Based upon the mutation rate probability <i>MR</i> (equate /* End of mutation */	and Pareto fronts point N ; esponding to Golomb ruler to the specified channels; /* Number of integers in candidates is equal to the number of channels * opulation of NP candidates; /* TC is a termination criterion * /* The best fit individual is chosen as the center of mass * ing or subtracting a normal random number whose value decreases as th /* Big Bang Phase * crossover rate P_{cross} ; on 5)perform mutation by using equation (6);
egin /* Big B Ir G Ba /* End of For i = 1 Ge V A:	Fig 2: Pseudo-code for Hybrid Multi-obje ang Phase */ itialize number of channels <i>n</i> , upper bound on the ruler length i enerate a random set of <i>NP</i> candidates (integer population) corre- sed on fitness value, find the global best solution <i>x</i> -among the p Big Bang Phase */ : <i>N</i> nerate <i>M</i> weights randomly which satisfies equation (4); /hile not <i>TC</i> /* Big Crunch Phase */ Compute the center of mass; /* End of Big Crunch Phase */ Calculate new candidate around the center of mass by add iterations elapse by using equation (2); /* Crossover */ Apply crossover operator with probability based on a /* End of crossover */ /* Mutation*/ Based upon the mutation rate probability <i>MR</i> (equate /* End of mutation */ Check Golombness of updated candidates;	and Pareto fronts point <i>N</i> ; esponding to Golomb ruler to the specified channels; /* Number of integers in candidates is equal to the number of channels * opulation of <i>NP</i> candidates; /* <i>TC</i> is a termination criterion * /* The best fit individual is chosen as the center of mass * ing or subtracting a normal random number whose value decreases as th /* Big Bang Phase * crossover rate P_{cross} ; on 5)perform mutation by using equation (6);
egin /* Big B Ir G Ba /* End of For i = 1 Ge V A:	Fig 2: Pseudo-code for Hybrid Multi-obje ang Phase */ itialize number of channels <i>n</i> , upper bound on the ruler length i enerate a random set of <i>NP</i> candidates (integer population) corresed sed on fitness value, find the global best solution <i>x</i> -among the p Big Bang Phase */ : <i>N</i> nerate <i>M</i> weights randomly which satisfies equation (4); /hile not <i>TC</i> /* Big Crunch Phase */ Compute the center of mass; /* End of Big Crunch Phase */ Calculate new candidate around the center of mass by add iterations elapse by using equation (2); /* Crossover */ Apply crossover operator with probability based on 4 /* End of crossover */ /* Mutation*/ Based upon the mutation rate probability <i>MR</i> (equation // Check Golombness of updated candidates; If Golombness is satisfied	and Pareto fronts point <i>N</i> ; esponding to Golomb ruler to the specified channels; /* Number of integers in candidates is equal to the number of channels * opulation of <i>NP</i> candidates; /* <i>TC</i> is a termination criterion * /* The best fit individual is chosen as the center of mass * ing or subtracting a normal random number whose value decreases as th /* Big Bang Phase * crossover rate P_{cross} ; on 5)perform mutation by using equation (6);
egin /* Big B Ir G Ba /* End of For i = 1 Ge V A:	Fig 2: Pseudo-code for Hybrid Multi-obje ang Phase */ itialize number of channels <i>n</i> , upper bound on the ruler length i enerate a random set of <i>NP</i> candidates (integer population) corre- sed on fitness value, find the global best solution <i>x</i> -among the p Big Bang Phase */ : <i>N</i> nerate <i>M</i> weights randomly which satisfies equation (4); /hile not <i>TC</i> /* Big Crunch Phase */ Compute the center of mass; /* End of Big Crunch Phase */ Calculate new candidate around the center of mass by add iterations elapse by using equation (2); /* Crossover */ Apply crossover operator with probability based on 4 /* End of crossover */ /* Mutation*/ Based upon the mutation rate probability <i>MR</i> (equate /* End of mutation */ Check Golombness of updated candidates; If Golombness is satisfied Retain that candidate and then go to B ;	and Pareto fronts point N ; esponding to Golomb ruler to the specified channels; /* Number of integers in candidates is equal to the number of channels * opulation of NP candidates; /* TC is a termination criterion * /* The best fit individual is chosen as the center of mass * ing or subtracting a normal random number whose value decreases as the /* Big Bang Phase * crossover rate P_{cross} ; on 5)perform mutation by using equation (6);
egin /* Big B Ir G Ba /* End of For i = 1 Ge V A:	Fig 2: Pseudo-code for Hybrid Multi-obje ang Phase */ itialize number of channels <i>n</i> , upper bound on the ruler length is enerate a random set of <i>NP</i> candidates (integer population) corresed sed on fitness value, find the global best solution <i>x</i> -among the p Big Bang Phase */ : <i>N</i> nerate <i>M</i> weights randomly which satisfies equation (4); /hile not <i>TC</i> /* Big Crunch Phase */ Compute the center of mass; /* End of Big Crunch Phase */ Calculate new candidate around the center of mass by add iterations elapse by using equation (2); /* Crossover */ Apply crossover operator with probability based on a /* End of crossover */ /* Mutation */ Based upon the mutation rate probability <i>MR</i> (equate /* End of mutation */ Check Golombness of updated candidates; If Golombness is satisfied Retain that candidate and then go to B ; Else	and Pareto fronts point <i>N</i> ; esponding to Golomb ruler to the specified channels; /* Number of integers in candidates is equal to the number of channels * opulation of <i>NP</i> candidates; /* <i>TC</i> is a termination criterion * /* The best fit individual is chosen as the center of mass * ing or subtracting a normal random number whose value decreases as th /* Big Bang Phase * crossover rate P_{cross} ; on 5)perform mutation by using equation (6);
egin /* Big B Ir G Ba /* End of For i = 1 Ge V	Fig 2: Pseudo-code for Hybrid Multi-obje ang Phase */ itialize number of channels <i>n</i> , upper bound on the ruler length : enerate a random set of <i>NP</i> candidates (integer population) corresed sed on fitness value, find the global best solution <i>x</i> -among the p Big Bang Phase */ : <i>N</i> nerate <i>M</i> weights randomly which satisfies equation (4); /hile not <i>TC</i> /* Big Crunch Phase */ Compute the center of mass; /* End of Big Crunch Phase */ Calculate new candidate around the center of mass by add iterations elapse by using equation (2); /* Crossover */ Apply crossover operator with probability based on a /* End of crossover */ /* Mutation*/ Based upon the mutation rate probability <i>MR</i> (equate /* End of mutation */ Check Golombness of updated candidates; If Golombness is satisfied Retain that candidate and then go to B; Else Remove that particular generated candidate and then generated	and Pareto fronts point N ; responding to Golomb ruler to the specified channels; /* Number of integers in candidates is equal to the number of channels * opulation of NP candidates; /* TC is a termination criterion * /* The best fit individual is chosen as the center of mass * ing or subtracting a normal random number whose value decreases as th /* Big Bang Phase * crossover rate P_{cross} ; on 5)perform mutation by using equation (6); ot o A;
egin /* Big B Ir G Ba /* End of For i = 1 Ge V A:	Fig 2: Pseudo-code for Hybrid Multi-obje ang Phase */ itialize number of channels <i>n</i> , upper bound on the ruler length : enerate a random set of <i>NP</i> candidates (integer population) corresed sed on fitness value, find the global best solution <i>x</i> -among the p Big Bang Phase */ : <i>N</i> nerate <i>M</i> weights randomly which satisfies equation (4); /hile not <i>TC</i> /* Big Crunch Phase */ Compute the center of mass; /* End of Big Crunch Phase */ Calculate new candidate around the center of mass by add iterations elapse by using equation (2); /* Crossover */ Apply crossover operator with probability based on a /* End of crossover */ /* Mutation*/ Based upon the mutation rate probability <i>MR</i> (equate /* End of mutation */ Check Golombness is satisfied Retain that candidate and then go to B; Else Remove that particular generated candidate and then ge End if	and Pareto fronts point <i>N</i> ; esponding to Golomb ruler to the specified channels; /* Number of integers in candidates is equal to the number of channels * opulation of <i>NP</i> candidates; /* <i>TC</i> is a termination criterion *, /* The best fit individual is chosen as the center of mass * ing or subtracting a normal random number whose value decreases as th /* Big Bang Phase *, crossover rate P_{cross} ; on 5)perform mutation by using equation (6);
egin /* Big B Ir G Ba /* End of For i = 1 Ge V A:	Fig 2: Pseudo-code for Hybrid Multi-obje ang Phase */ itialize number of channels <i>n</i> , upper bound on the ruler length : enerate a random set of <i>NP</i> candidates (integer population) corres sed on fitness value, find the global best solution <i>x</i> -among the p Big Bang Phase */ : <i>N</i> nerate <i>M</i> weights randomly which satisfies equation (4); /hile not <i>TC</i> /* Big Crunch Phase */ Compute the center of mass; /* End of Big Crunch Phase */ Calculate new candidate around the center of mass by add iterations elapse by using equation (2); /* Crossover */ Apply crossover operator with probability based on a /* End of crossover */ /* Mutation*/ Based upon the mutation rate probability <i>MR</i> (equate /* End of mutation */ Check Golombness of updated candidates; If Golombness is satisfied Retain that candidate and then go to B; Else Remove that particular generated candidate and then ge End if Evaluate fitness values of the generated <i>NP</i> candidates and fi If new solutions are better undate them in the promulation;	and Pareto fronts point N ; esponding to Golomb ruler to the specified channels; /* Number of integers in candidates is equal to the number of channels * opulation of <i>NP</i> candidates; /* <i>TC</i> is a termination criterion *, /* The best fit individual is chosen as the center of mass * ing or subtracting a normal random number whose value decreases as the /* Big Bang Phase *, crossover rate P_{cross} ; on 5)perform mutation by using equation (6);
egin /* Big B Ir G Ba /* End of For i = 1 Ge V A:	Fig 2: Pseudo-code for Hybrid Multi-obje ang Phase */ itialize number of channels <i>n</i> , upper bound on the ruler length <i>i</i> : enerate a random set of <i>NP</i> candidates (integer population) corres sed on fitness value, find the global best solution <i>x</i> -among the p Big Bang Phase */ : <i>N</i> nerate <i>M</i> weights randomly which satisfies equation (4); //hile not <i>TC</i> /* Big Crunch Phase */ Compute the center of mass; /* End of Big Crunch Phase */ Calculate new candidate around the center of mass by add iterations elapse by using equation (2); /* Crossover */ Apply crossover operator with probability based on 4 /* End of crossover */ /* Mutation*/ Based upon the mutation rate probability <i>MR</i> (equations /* End of mutation */ Check Golombness is satisfied Retain that candidate and then go to B; Else Remove that particular generated candidates and then ge End if Evaluate fitness values of the generated <i>NP</i> candidates and then generated <i>NP</i> candidates and then go to B; End if Evaluate fitness values of the generated <i>NP</i> candidates and then generated <i>NP</i> candidates and th	and Pareto fronts point N ; responding to Golomb ruler to the specified channels; /* Number of integers in candidates is equal to the number of channels * opulation of NP candidates; /* TC is a termination criterion */ /* The best fit individual is chosen as the center of mass * ing or subtracting a normal random number whose value decreases as the /* Big Bang Phase */ crossover rate P_{cross} ; on 5)perform mutation by using equation (6); o to A; form a single optimize objective $f(x)$;
egin /* Big B Ir G Ba /* End of For <i>i</i> = 1 Ge V A: A:	Fig 2: Pseudo-code for Hybrid Multi-obje ang Phase */ itialize number of channels <i>n</i> , upper bound on the ruler length <i>i</i> : enerate a random set of <i>NP</i> candidates (integer population) corres sed on fitness value, find the global best solution <i>x</i> -among the p Big Bang Phase */ : <i>N</i> nerate <i>M</i> weights randomly which satisfies equation (4); // Big Crunch Phase */ Compute the center of mass; /* End of Big Crunch Phase */ Calculate new candidate around the center of mass by add iterations elapse by using equation (2); /* Crossover */ Apply crossover operator with probability based on 4 /* End of crossover */ /* Mutation*/ Based upon the mutation rate probability <i>MR</i> (equations // Check Golombness of updated candidates; If Golombness is satisfied Retain that candidate and then go to B; Else Remove that particular generated <i>NP</i> candidates and fi fi new solutions are better, update them in the population; Rank the solutions and find the global best solution <i>x</i> -; d while	and Pareto fronts point N ; responding to Golomb ruler to the specified channels; /* Number of integers in candidates is equal to the number of channels * opulation of NP candidates; /* TC is a termination criterion * /* The best fit individual is chosen as the center of mass * ing or subtracting a normal random number whose value decreases as th /* Big Bang Phase * crossover rate P_{cross} ; on 5)perform mutation by using equation (6); o to A; form a single optimize objective $f(x)$;
egin /* Big B Ir G Ba /* End of For i = 1 Ge V A: A: B: En Rec	Fig 2: Pseudo-code for Hybrid Multi-obje ang Phase */ itialize number of channels <i>n</i> , upper bound on the ruler length <i>i</i> : enerate a random set of <i>NP</i> candidates (integer population) corres sed on fitness value, find the global best solution <i>x</i> -among the p Big Bang Phase */ : <i>N</i> nerate <i>M</i> weights randomly which satisfies equation (4); //hile not <i>TC</i> /* Big Crunch Phase */ Compute the center of mass; /* End of Big Crunch Phase */ Calculate new candidate around the center of mass by add iterations elapse by using equation (2); /* Crossover */ Apply crossover operator with probability based on 4 /* End of crossover */ /* Mutation*/ Based upon the mutation rate probability <i>MR</i> (equations is satisfied Retain that candidate and then go to B ; Else Remove that particular generated candidate and then ge End if Evaluate fitness values of the generated <i>NP</i> candidates and fi for esolutions are better, update them in the population; Rank the solutions and find the global best solution <i>x</i> -; d while ord <i>x</i> - as a non-dominated solution;	and Pareto fronts point N ; esponding to Golomb ruler to the specified channels; /* Number of integers in candidates is equal to the number of channels * opulation of NP candidates; /* TC is a termination criterion * /* The best fit individual is chosen as the center of mass * ing or subtracting a normal random number whose value decreases as th /* Big Bang Phase * crossover rate P_{cross} ; on 5)perform mutation by using equation (6); o to A; form a single optimize objective $f(x)$;
egin /* Big B Ir G Ba /* End of For i = 1 Ge V A: A: End for i	Fig 2: Pseudo-code for Hybrid Multi-obje ang Phase */ ititalize number of channels <i>n</i> , upper bound on the ruler length is enerate a random set of <i>NP</i> candidates (integer population) corres sed on fitness value, find the global best solution <i>x</i> -among the p Big Bang Phase */ : <i>N</i> nerate <i>M</i> weights randomly which satisfies equation (4); /hile not <i>TC</i> /* Big Crunch Phase */ Compute the center of mass; /* End of Big Crunch Phase */ Calculate new candidate around the center of mass by add iterations elapse by using equation (2); /* Crossover */ Apply crossover operator with probability based on { /* End of crossover */ /* Mutation*/ Based upon the mutation rate probability <i>MR</i> (equations of the formation of the formation of the formation for the generated candidate and then go to B ; Else Remove that particular generated candidate and then go End if Evaluate fitness values of the generated <i>NP</i> candidates and for finew solutions are better, update them in the population; Rank the solutions and find the global best solution <i>x</i> -; d while or <i>x</i> - as a non-dominated solution;	and Pareto fronts point <i>N</i> ; esponding to Golomb ruler to the specified channels; /* Number of integers in candidates is equal to the number of channels * opulation of <i>NP</i> candidates; /* <i>TC</i> is a termination criterion *. /* The best fit individual is chosen as the center of mass * ing or subtracting a normal random number whose value decreases as the /* Big Bang Phase *. crossover rate P_{cross} ; on 5)perform mutation by using equation (6); o to A ; form a single optimize objective $f(x)$;
egin /* Big B Ir G Ba /* End of For i = 1 Ge V A: A: B: En Rec End for i Postproces	Fig 2: Pseudo-code for Hybrid Multi-obje ang Phase */ itialize number of channels <i>n</i> , upper bound on the ruler length is enerate a random set of <i>NP</i> candidates (integer population) corres sed on fitness value, find the global best solution <i>x</i> -among the pr Big Bang Phase */ : <i>N</i> nerate <i>M</i> weights randomly which satisfies equation (4); //hile not <i>TC</i> /* Big Crunch Phase */ Compute the center of mass; /* End of Big Crunch Phase */ Calculate new candidate around the center of mass by add iterations elapse by using equation (2); /* Crossover */ Apply crossover operator with probability based on a /* End of crossover */ /* Mutation */ Based upon the mutation rate probability <i>MR</i> (equate /* End of mutation */ Check Golombness is satisfied Retain that candidate and then go to B ; Else Remove that particular generated candidates and then ge End if Evaluate fitness values of the generated <i>NP</i> candidates and fi f new solutions are better, update them in the population; Rank the solutions and find the global best solution <i>x</i> -; d while sord <i>x</i> - as a non-dominated solution; as the results and visualization;	and Pareto fronts point N ; esponding to Golomb ruler to the specified channels; /* Number of integers in candidates is equal to the number of channels *. opulation of NP candidates; /* TC is a termination criterion */ /* The best fit individual is chosen as the center of mass * ing or subtracting a normal random number whose value decreases as the /* Big Bang Phase */ crossover rate P_{cross} ; on 5)perform mutation by using equation (6); o to A ; form a single optimize objective $f(x)$;
egin /* Big B Ir G Ba /* End of For i = 1 Ge V A: A: End for i Postproces nd	Fig 2: Pseudo-code for Hybrid Multi-obje ang Phase */ ititalize number of channels <i>n</i> , upper bound on the ruler length is enerate a random set of <i>NP</i> candidates (integer population) corres sed on fitness value, find the global best solution <i>x</i> -among the p Big Bang Phase */ : <i>N</i> nerate <i>M</i> weights randomly which satisfies equation (4); /hile not <i>TC</i> /* Big Crunch Phase */ Compute the center of mass; /* End of Big Crunch Phase */ Calculate new candidate around the center of mass by add iterations elapse by using equation (2); /* Crossover */ Apply crossover operator with probability based on /* End of crossover */ /* Mutation */ Check Golombness is satisfied Retain that candidate and then go to B ; Else Remove that particular generated candidates and then ge End if Evaluate fitness values of the generated <i>NP</i> candidates and fi fnew solutions are better, update them in the population; Rank the solutions and find the global best solution <i>x</i> -; d while or <i>x</i> - as a non-dominated solution; as the results and visualization;	and Pareto fronts point <i>N</i> ; esponding to Golomb ruler to the specified channels; * Number of integers in candidates is equal to the number of channels * opulation of <i>NP</i> candidates; /* <i>TC</i> is a termination criterion * /* The best fit individual is chosen as the center of mass * ing or subtracting a normal random number whose value decreases as th /* Big Bang Phase * crossover rate <i>P</i> _{cross} ; on 5)perform mutation by using equation (6);

Fig 3: Pseudo-code for HMOBB-BC Algorithm to Generate OGR Sequences

where r_1 , r_2 and r_3 are randomly chosen mutually different integers from the interval [0, *NP*-1] and $P_{mutate} > 0$ is the mutation rate. The integers r_1 , r_2 and r_3 are different from the running index *i*. P_{mutate} is a real and constant factor which controls the amplification of the differential variation. The differential mutation strategy increases the chances for a good solution, but a high mutation rate (>1) results in too much exploration and is disadvantageous to the improvement of candidate solutions [28]. Based upon the above discussion, the corresponding pseudo code for HMOBB–BC algorithm is shown in Figure 2.

4. PROBLEM FORMULATION

If the spacing between any pair of channels is denoted as CS and the total number of channels is n, then the objective is to optimize the length of the ruler denoted as RL, which is given by the equation (7) [28]:

$$RL = \sum_{i=1}^{n-1} (CS)_i \tag{7}$$

subject to $(CS)_i \neq (CS)_j$.

If each individual element is a Golomb ruler, the sum of all elements of an individual forms the total optical bandwidth of the channels. Thus, if an individual element is denoted as *IE* then the second objective is to minimize the total optical bandwidth *TBW* which is given by the equation (8):

$$TBW = \sum_{i=1}^{n} (IE)_{i}$$
subject to $(IE)_{i} \neq (IE)_{j}$.
(8)

where i, j = 1, 2, ..., n with $i \neq j$ are distinct in both equations (7) and (8).

The proposed pseudo-code for HMOBB-BC algorithm to generate OGR sequences as unequally spaced channelallocation in optical WDM system is shown in Figure 3.

5. SIMULATION RESULTS AND DISCUSSION

To find unequal spaced channel–allocation algorithm in optical WDM systems i.e. OGR sequences, the proposed HMOBB–BC algorithm has been written and verified in Matlab–7 language [53] under Windows 7 operating system. To show the effectiveness of the proposed algorithm, its performance is being compared with known OGRs [15], [20], [38]–[42], [54]–[56], EQC, SA [2], [13], [24], GA [28], and BB–BC [31], [32] algorithms of generating unequal spaced WDM channel–allocation sequences.

5.1 Simulation Parameters for Hybrid Multi-objective Big Bang–Big Crunch

To generate optimal Golomb ruler sequences as optical WDM channel–allocation, after a number of careful experimentation, the optimum values of HMOBB–BC parameters finally been settled in this research is reported in Table 1.

It is noted that the iterations has little effect for low order marks for examples n = 3 and 4. But for higher order marks, the iterations has a great effect on the performance of HMOBB–BC algorithm i.e. ruler length and total bandwidth gets optimized after a certain numbers of iterations. As the number of iterations increases, the length of the ruler and hence the total optical bandwidth of the sequence tends to decrease; it means that the rulers reach their optimum values after a certain number of iterations. This is the point where the

Table 1. Simulation parameters for HMOBB-BC Algorithm

Parameter	Value				
<i>c</i> ₁	0.1				
<i>c</i> ₂	5				
Number of candidates (Popsize)	20				
Crossover method	Single Point				
Crossover probability (P_{cross})	1				
Mutation rate (P_{mutate})	0.05				
Iterations	1000				

results are optimum and no further improvement is seen, that is, we are approaching towards the optimal solution. By carefully observation, the paper fixed the iterations of 1000 for HMOBB–BC algorithm. With these parameters values, a number of sets of trials for various order marks are conducted.

5.2 Comparison of HMOBB-BC Algorithm with Previous Existing Algorithms in Terms of Ruler Length, Total Bandwidth and Average CPU Time

The purpose to use HMOBB–BC algorithm in this paper is to optimize the length of the ruler so as to conserve the total bandwidth occupied by the channels in less computational time. Table 2 list the length of ruler (RL), total optical bandwidth (TBW) and average CPU time occupied by different sequences obtained by proposed algorithm for various channels n and its comparison with known OGRs [15], [20], [38]–[42], [54]–[56], EQC, SA [2], [13], [24], GA [28], and BB–BC [31], [32] algorithms.

The application of conventional algorithms i.e. EQC and SA is limited to prime powers [2], so the length of ruler and total bandwidth for EQC and SA are shown by a dash line in Table 2. Comparing the simulation results obtained from HMOBB-BC algorithm with known OGRs, EQC, SA, GA and BB-BC; it is perceived that there is a significant improvement with respect to the length of the ruler, the total bandwidth occupied and average CPU time that is, the results gets better. Figure 4 (a) and 4 (b) illustrates the graphical comparison of HMOBB-BC algorithm to generate OGR sequences for optical WDM system with existing algorithms in terms of the length of the ruler and total optical bandwidth occupied by the various order mark values respectively, whereas Figure 5 illustrates the comparison of proposed HMOBB-BC algorithm with GA and BB-BC algorithm in terms of average CPU time (in Sec.) for various order marks. So, it is concluded from Table 2, Figures 4 and 5 that the performance of proposed HMOBB-BC algorithm is better than the existing algorithms.

6. CONCLUSION

This paper presented the application of nature–inspired multi– objective BB–BC optimization algorithm and its hybridization with Genetic crossover and differential mutation operator to find optimal Golomb ruler sequences needed for optical WDM systems. The optimal Golomb ruler's sequence provides the unequal channel–allocation in optical WDM systems to reduce the FWM crosstalk. It has been observed that proposed HMOBB–BC algorithm produces Golomb ruler sequences very efficiently and effectively. The performance is being compared with the existing conventional and nature– inspired algorithms in terms of the length of ruler, total optical channel bandwidth and average CPU time obtained by the

	Known OGRs [15], [20], [38]–[42], [54]–[56]		ALGORITHMS												
			Conventiona		l Algorithms		Existing Nature–Inspired Algorithms					Proposed Algorithm			
n			EQC [2], [13], [24]		SA [2], [13], [24]		GA [28]		BB-BC [31], [32]			НМОВВ-ВС			
	RL	TBW (Hz)	RL	TBW (Hz)	RL	TBW (Hz)	RL	TBW (Hz)	Average CPU time (Sec.)	RL	TBW (Hz)	Average CPU time (Sec.)	RL	TBW (Hz)	Average CPU time (Sec.)
4	6	11	15	28	15	28	6 7	11	0.001	6 7	11	0.000	6 7	11	0.000
5	11	25 28	_	_	_	_	12 13	23 25 29	0.021	11 12	23 25	0.009	11 12 13	23 25	0.001
6	17	44 47 50	45	140	20	60	17 18 21	42 44 45	0.780	17 18	42 44	0.659	17 18	42 44	0.0539
7	25	77 81 87 90 95	_	_	_	_	27 28 29 30 31 32	73 78 79 80 83 86 95	1.120	25 26 28 30	73 74 77 81	1.170	25 28	74 77 81 90	0.0899
8	34	117	91	378	49	189	35 41 42 45 46	121 126 128 129 131 133	1.241	39 41 42	113 118 119	1.210	34 39	113 117	0.1441
9	44	206		_	_	_	52 56 59 61 63 65	192 193 196 203 225	1.711	44 45 46 61	179 248 253 262	1.698	44	206	1.1895
10	55	249	_	_	_	_	75 76	283 287 301	5.499e+01	77	258	5.450e+01	55	249	3.151e+01
11	72	386 391	_	_	—	_	94 96	395 456	7.200e+02	72 105	377 490 456	6.990e+02	72	386	4.765e+02
12	85	503	231	1441	132	682	123 128 137	532 581 660	8.602e+02	85 91	550 580 613	7.981e+02	85	503	5.659e+02
13	106	660	_	_	_	_	203 241	1015 1048	1.070e+03	110 113	768 753	1.020e+03	106	660	8.751e+02
14	127	924	325	2340	286	1820	206 228 230	1172 1177 1285	1.028e+03	221	1166	1.021e+03	127	924	1.013e+03
15	151	1047	_	—	_	_	275 298	1634 1653	1.440e+03	267	1322	1.291e+03	151	1047	1.165e+03
16	177	1298		_	—	_	316	1985	1.680e+03	316	1985	1.450e+03	177	1298	1.341e+03
17	199	1661	—	—	—	—	355	2205	5.048e+04	369	2201	4.075e+04	199	1661	3.462e+03
18	216	1894	561	5203	493	5100	427	2599	6.840e+04	427	3079	5.897e+04	427	3079	4.077e+04
19	246	2225	_	_	_	_	403 567	3432	8.280e+04	584	4101	7.158e+04	467	3337	6.685e+04
20	283	2794	703	7163	703	6460	597 615 673 680 691	5067 4660 4826 4905 4941	1.12428e+05	691	4941	1.0012e+05	578 615	4306 4660	7.333e+04

Table 2: Performance Comparison of proposed HMOBB-BC Algorithm with Known OGR, EQC, SA, GA and BB-BC in terms of Ruler Length, Total Bandwidth, and Average CPU Time

different sequences. The preliminary results indicate that proposed HMOBB–BC algorithm appears to be most efficient algorithm to generate OGRs for optical WDM systems and outperforms the existing algorithms.

In order to see the complexity of realizing the unequal channel spacing, the existing researches does not show the

implementation of their algorithms in real optical WDM systems. So, in order for the algorithms to be of practical use, it is desired that the performance of the algorithms for higher order OGRs channels may be evaluated and may be used to provide unequal channel spacing in real optical WDM systems.

Fig 4: The proposed HMOBB–BC algorithm exhibits the significant reduction in (a) ruler length and (b) total occupied optical bandwidth in comparison to the existing algorithms i.e. Known OGR, EQC, SA, GA and BB-BC

Fig 5: The proposed HMOBB–BC algorithm exhibits the significant reduction in average CPU time in sec. in comparison to the existing algorithms i.e. GA and BB-BC

7. REFERENCES

[1] Chraplyvy, A. R. 1990. Limitations on Lightwave Communications Imposed by Optical–Fiber Nonlinearities, J. Lightwave Technology, Vol. 8, pp. 1548–1557.

- [2] Kwong, W. C., and Yang, G. C. 1997. An Algebraic Approach to the Unequal-Spaced Channel-Allocation Problem in WDM Lightwave Systems, IEEE Transactions on Communications, Vol. 45, No.3, pp. 352–359.
- [3] Saaid, N. M. 2010. Nonlinear Optical Effects Suppression Methods in WDM Systems with EDFAs: A Review, In Proceedings of the International Conference on Computer and Communication Engineering (ICCCE), Kuala Lumpur, Malaysia.
- [4] Aggarwal, G. P. 2001. Nonlinear Fiber Optics, Edition, Academic Press, San Diego, CA.
- [5] Thing, V. L. L., Shum, P., and Rao, M. K. (2004). Bandwidth–Efficient WDM Channel Allocation for Four-Wave Mixing-Effect Minimization, IEEE Transactions on Communications, Vol. 52, No. 12, pp. 2184–2189.
- [6] Forghieri, F., Tkach, R. W., Chraplyvy, A. R., and Marcuse, D. 1994. Reduction of Four–Wave Mixing Crosstalk in WDM Systems Using Unequally Spaced Channels. IEEE Photonics Technology Letters, Vol. 6, No. 6, pp. 754–756.
- [7] Babcock, W. C. 1953. Intermodulation interference in radio systems, Bell Systems Technical Journal, pp. 63– 73.
- [8] Sardesai, H. P. 1999. A Simple Channel Plan to Reduce Effects of Nonlinearities In Dense WDM Systems. Lasers and Electro–Optics, (23–28, May–1999), pp. 183– 184.
- [9] Forghieri, F., Tkach, R. W., and Chraplyvy, A. R. 1995. WDM systems with unequally spaced channels. J. Lightwave Technol., Vol. 13, pp. 889–897.
- [10] Hwang, B. and Tonguz, O. K. 1998. A Generalized Suboptimum Unequally Spaced Channel Allocation Technique—Part I: In IM/DD WDM systems. IEEE Trans. Commun., Vol. 46, pp. 1027–1037.
- [11] Tonguz, O. K. and Hwang B. 1998. A Generalized Suboptimum Unequally Spaced Channel Allocation Technique—Part II: In coherent WDM systems. IEEE Trans. Commun., Vol. 46, pp. 1186–1193.
- [12] Atkinson, M. D., Santoro, N., and Urrutia, J. 1986. Integer sets with distinct sums and differences and carrier frequency assignments for nonlinear repeaters. IEEE Trans. Commun., Vol. COM-34.
- [13] Randhawa, R., Sohal, J. S. and Kaler, R. S. 2009. Optimum Algorithm for WDM Channel Allocation for Reducing Four-Wave Mixing Effects. Optik120, pp. 898–904.
- [14] http://www.compunity.org/events/pastevents/ewomp204/ jaillet_krajecki_pap_ew04.pdf.
- [15] Bloom, G. S. and Golomb, S.W. 1977. Applications of Numbered Undirected Graphs. In Proceedings of the IEEE, Vol. 65, No. 4, pp. 562–570.
- [16] Thing, V. L. L., Rao, M. K. and Shum, P. 2003. Fractional Optimal Golomb Ruler Based WDM Channel Allocation. In Proceedings of the 8th Opto–Electronics

International Journal of Computer Applications (0975 – 8887) Volume 85 – No 9, January 201425and Communication Conference (OECC–2003), Vol. 23, pp. 631-632.

- [17] Shearer, J. B. 1998. Some New Disjoint Golomb Rulers. IEEE Transactions on Information Theory, Vol. 44, No. 7, pp. 3151–3153.
- [18] http://theinf1.informatik.unijena.de/teaching/ss10/oberse minar-ss10
- [19] Robinson, J. P. 1979. Optimum Golomb Rulers. IEEE Transactions on Computers, Vol. C-28, No. 12, (December 1979), pp. 943–944.
- [20] Shearer, J. B. 1990. Some New Optimum Golomb Rulers. IEEE Transactions on Information Theory. IT-36, pp. 183–184.
- [21] Galinier, P., Jaumard, B., Morales, R. and Pesant, G. 2001. A constraint–Based Approach to the Golomb Ruler Problem. In Proceeding of 3rd International workshop on integration of AI and OR techniques (CP–AI–OR 2001).
- [22] Leitao, T. 2004. Evolving the Maximum Segment Length of a Golomb Ruler. Genetic and Evolutionary Computation Conference, USA.
- [23] Rankin, W. T. 1993. Optimal Golomb Rulers: An exhaustive parallel search implementation. M.S.thesis,DukeUniversity,Availableathttp://people.ee.d uke.edu/~wrankin/golomb/golomb.htm.
- [24] Shobhika. 2005. Generation of Golomb Ruler Sequences and Optimization Using Genetic Algorithm. M.Tech. Thesis, Department of Electronics and Communication Engineering, Thapar Institute of Engineering and Technology, Deemed University, Patiala.
- [25] Soliday, S. W., Homaifar, A. and Lebby, G. L. 1995. Genetic Algorithm Approach to the Search for Golomb Rulers. In Proceedings of the Sixth International Conference on Genetic Algorithms (ICGA–95), Morgan Kaufmann, pp. 528–535.
- [26] Robinson, J. P. 2000. Genetic Search for Golomb Arrays. IEEE Transactions on Information Theory, Vol. 46, No. 3, pp. 1170–1173.
- [27] Ayari, N., Luong, T. V. and Jemai, A. 2010. A Hybrid Genetic Algorithm for Golomb Ruler Problem. In Proceeding of ACS/IEEE International Conference on Computer Systems and Applications (AICCSA 2010), pp.1–4.
- [28] Bansal, S., 2014. Optimal Golomb Ruler Sequence Generation for FWM Crosstalk Elimination: Soft Computing Versus Conventional Approaches. Applied Soft Computing Journal (Elsevier), Vol. 22, pp. 443–457.
- [29] Bansal, S., Kumar, S., Sharma, H. and Bhalla, P. 2011. Generation of Golomb Ruler Sequences and Optimization Using Biogeography Based Optimization. In Proceedings of 5th International Multi Conference on Intelligent Systems, Sustainable, New and Renewable Energy Technology and Nanotechnology (IISN–2011), Institute of Science and Technology Klawad, Haryana, pp 282–288.
- [30] Bansal, S., Kumar, S., Sharma, H. and Bhalla, P. 2011. Golomb Ruler Sequences Optimization: A BBO Approach. International Journal of Computer Science

and Information Security (IJCSIS), Pittsburgh, PA, USA, Vol. 9, No. 5, pp. 63–71.

- [31] Kumar S., Bansal S. and Bhalla P. 2012. Optimal Golomb Ruler Sequence Generation for FWM Crosstalk Elimination: A BB–BC Approach. In Proceedings of 6th International Multi Conference on Intelligent Systems, Sustainable, New and Renewable Energy Technology and Nanotechnology (IISN–2012), Institute of Science and Technology Klawad–133105, Haryana, India, pp. 255–262.
- [32] Bansal S., Kumar S. and Bhalla P. 2013. A Novel Approach to WDM Channel Allocation: Big Bang–Big Crunch Optimization. In the proceeding of Zonal Seminar on Emerging Trends in Embedded System Technologies (ETECH-2013) organized by The Institution of Electronics and Telecommunication Engineers (IETE), Chandigarh Centre, Chandigarh, pp. 80–81.
- [33] Bansal, S. and Singh, K., 2014. A Novel Soft– Computing Algorithm for Channel Allocation in WDM Systems. International Journal of Computer Applications (IJCA), Vol. 85, No. 9, pp. 19–26.
- [34] Bansal, S., Chauhan, R. and Kumar, P., 2014. A Cuckoo Search based WDM Channel Allocation Algorithm. International Journal of Computer Applications (IJCA), Vol. 96, No. 20, pp. 6–12.
- [35] Jain, P., Bansal, S., Singh, A. K. and Gupta, N., 2015. Golomb Ruler Sequences Optimization for FWM Crosstalk Reduction: Multi–population Hybrid Flower Pollination Algorithm. Progress in Electromagnetics Research Symposium (PIERS), Prague, Czech Republic, pp. 2463–2467.
- [36] Horn, J., Nafbliotis, N., and Goldberg, D. E. 1994. A Niched Pareto Genetic Algorithm for Multiobjective Optimization. Evolutionary Computation, 1994. IEEE World Congress on Computational Intelligence, Proceedings of the first IEEE Conference on, Vol. 1, pp 82-87.
- [37] Yang, X.–S., Karamanoglu, M., and He., X. S. 2014. Flower Pollination Algorithm: A Novel Approach for Multi-objective Optimization. Engineering Optimization, Vol. 46, Issue 9, pp. 1222–1237, doi: 10.1080/0305215x.2013.832237.
- [38] Dimitromanolakis, A. 2002. Analysis of the Golomb Ruler and the Sidon Set Problems, and Determination of Large, Near-Optimal Golomb Rulers. Master's Thesis, Department of Electronic and Computer Engineering, Technical University of Crete.
- [39] Dollas, A., Rankin, W. T., and McCracken, D. 1998. A New Algorithm for Golomb Ruler Derivation and Proof of the 19 Mark Rulers. IEEE Transactions on Information Theory, Vol. 44, No. 1, pp. 379–382.
- [40] Project OGR. http://www.distributed.net/OGR.
- [41] Cotta, C., Dotu, I., Fernandez, Antonio J., and Hentenryck, Pascal V. 2007. Local Search-Based Hybrid Algorithms for Finding Golomb Rulers. Kluwer Academic Publishers, Boston, Vol. 12, Issue 3, pp. 263– 291.
- [42] http://mathworld.wolfram.com/PerfectRuler.html

- [43] http://mathworld.wolfram.com/GolombRuler.html
- [44] Afshar, M. H., and Motaei, I. 2011. Constrained Big Bang-Big Crunch Algorithm For Optimal Solution of Large Scale Reservoir Operation Problem, *International* Journal of Optimization In Civil Engineering, pp. 357– 375.
- [45] Tabakov, P. Y. 2011. Big Bang–Big Crunch Optimization Method in Optimum Design of Complex Composite Laminates, World Academy of Science, Engineering and Technology, Vol. 77, pp. 835–839.
- [46] Ahmadi, S. and Sedighizadeh, M. 2014. An Efficient Hybrid Big Bang-Big Crunch Algorithm for Reconfiguration of Distribution System for Loss Reduction, in Conference and exhibition on Electricity Distribution, Vol 14-E-aaa-0000.
- [47] Erol, O. K. and Eksin, I. 2006. A New Optimization Method: Big Bang–Big Crunch. Advances in Engineering Software, Vol.37, pp. 106–111.
- [48] Yesil, E. and Urbas, L. 2010. Big Bang–Big Crunch Learning Method for Fuzzy Cognitive Maps, World Academy of Science, Engineering and Technology 71, pp. 815–824.
- [49] Zandi, Z., Afjei, E., and M. Sedighizadeh. Hybrid Big Bang–Big Crunch Optimization Based Optimal Reactive Power Dispatch for Voltage Stability Enhancement. In

Electrical and Computer Engineering Department, Shahid Beheshti University, G.C., Velenjak, Tehran, Iran, Vol. 47, No.2, pp. 537–546.

- [50] Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley, USA.
- [51] Price, K., Storn, R. and Lampinen. J. 2005. Differential Evolution–A Practical Approach to Global Optimization. Springer, Berlin, Germany.
- [52] Storn, R., and Price, K. V. 1997. Differential Evolution—A Simple and Efficient Heuristic for Global Optimization Over Continuous Spaces. Journal of Global Optimization, Vol. 11, No. 4, pp. 341–359.
- [53] http://in.mathworks.com/help/matlab/index.html.
- [54] Shearer, J. B., 2001. Golomb Ruler Table. Mathematics Department, IBM Research. Available at http://www.research.ibm.com/people/s/shearer/grtab.htm l.
- [55] Colannino, J. 2003. Circular and Modular Golomb Rulers.
- [56] Shearer, J. B. Smallest Known Golomb Rulers. Mathematics Department, IBM Research. Available at http://www.research.ibm.com/people/s/shearer/gropt.htm l