
International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.13, August 2015

35

Comparing Detection Ratio of Three Static

Analysis Tools

Hanmeet Kaur Brar

Student, UIET, Panjab University
Chandigarh

India.

Puneet Jai Kaur
Asstt. Professor, UIET, Panjab University

Chandigarh
India

ABSTRACT

Static code analysis is a software verification activity in which

source code is scrutinized for quality and security. In a

Software Development Lifecycle, timely detection of flaws is

beneficial and static analysis tools help us to detect flaws at a

very early stage. Both commercial and open source static

analysis tools are available today. Due to diverse user

requirements and capabilities of the tools, a comparison

between tools is required. Three open source static analysis

tools for security are evaluated in this paper. These are

Cppcheck, RATS and Flawfinder. They have been studied and

compared to each other on the basis of detection ratio. For the

purpose of obtaining the detection ratio, the vulnerabilities

were categorized and intentionally introduced into the demo

codes.

General Terms

Security.

Keywords

Software development life cycle; Static analysis; Static

analysis tools; Detection Ratio; Vulnerabilities; Security;

Assessment.

1. INTRODUCTION
Software security has become vital due to high inclusion of

software applications in almost every sphere of our lives.

Code with compromised quality may become functional but

can be a great threat to security of the software. The problem

of software security emerges from vulnerabilities in software.

The main cause of these vulnerabilities is either improper

coding done by the coder [1] or a deficiency in the language

in which coding is being done. In both the cases, figuring out

and then eliminating these vulnerabilities is quite important

and that too in early stages of Software Development Life

Cycle (SDLC). Otherwise this may lead to disastrous results

[2]. Avoiding investment for this purpose at earlier stages may

lead to great damages at later stages and some of these may

become irreparable at that time [3].

 Nearly 90% of detected hacking attacks related to security

arise because of flawed coding [4]. So finding the inadequacy

in software development and then working upon it is very

important and should be done. There are numerous ways for

improvement of security of software and those include firm

model usage for the purpose of design development, raising

awareness related to security among the programmers, safe

environment for running software, etc. [5].

Any kind of vulnerabilities can be discovered either manually

examining the source code or with usage of tools which are

automated. In the first case, that is manual examination of the

code, the time taken may reach unbearable limits. Moreover it

is a tedious job. In few cases, examining manually is not even

possible [6]. So here we take the help of static analysis tools.

These tools provide support to manual approach of examining

code, by pointing out the vulnerabilities or the potential risks.

Thus they save energy as well as time.

Due to immense effectiveness of these tools in code analysis,

many tools are being designed and used. The significance of

these tools can be estimated by the truth that static analysis

tools have been made a vital part in SDLC of many

companies including Microsoft [7]. Although these tools

detect vulnerabilities automatically, these need to be operated

manually. Deciding that a vulnerability detected by the tool is

really a risk has to be done manually. But still these tools can

be of great help if operated intelligently to aid the manual

approach [8].

Various studies and research have already been done on static

analysis tools and their utility. Many comparative studies have

also been done. It is quite important to comparatively analyze

the tools separately for each field. It is important to judge their

utility, strengths and weaknesses as compared to other tools in

the same field.

These tools can uncover various categories of vulnerabilities

but their ability is not regular across the spectrum of the

vulnerabilities. One tool can detect a particular category while

the other tool cannot and vice versa. Sometimes even this

happens that a tool detects a particular category but skips few

of its variants [9]. These things are not mentioned by all user

manuals and hence require research.

In this paper, the selected 3 static analysis tools have been

studied and compared to each other on the basis of detection

ratio. For the purpose of obtaining the detection ratio, there

was a need to categorize the vulnerabilities and indicate the

detection and ignorance of each category and the same has

been done in this paper.

Arrangement of the rest of the paper is as follows. Section 2

gives a brief a brief introduction to static code analysis. In

section 3 static analysis tools used in this paper and the

criteria for their selection is discussed. Section 4 explains

Detection Ratio and Section 5 includes the results and their

analysis. Section 6 and 7 contain the conclusion and any

future work possible respectively. Section 8 contains the

references.

2. STATIC CODE ANALYSIS
Static code analysis is an activity invloving the inspection of a

source code for quality and security [10]. It helps the software

developers and testers in detecting and making out several

types of flaws—e.g. dead code, divide by zero, overflow of

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.13, August 2015

36

bufffer boundaries, out of bounds read/write, etc.—essentialy

without running the code. The flaws thus detected can easily

be taken out by the programmer. Thus, a more efficient code

can be generated with the help of static code analysis.

Static code analysis uncovers “hard” bugs before runtime

which may be impossible to detect during rumtime e.g.

memory leaks which increase memory footprint but do not

affect the functioning of the programs. Finding flaws in a very

long code is not possible manually [11].

Thus to detect security vulnerabilities early in a software

development lifecycle, automatic static analysis is used [12].

The objective of doing this is to decrease the time and work

required to do a code review. The quest to automate the code

reviews began with simple program checkers [13], but more

complicated and competent tools for different languages were

developed later on. These tools help the programmer in

making their code secure, stable, efficient and dependable.

Staic analysis has many advantages. The program to be

analyzed does not have to be complete. Static analysis can be

used very early in the software development lifecycle. Thus,

an early report on software quality is received. This reduces

the rework cost and development productivity increases. Test

cases do not need to be designed and “hard” bugs like

memory leaks can be detected [14]. Tool has access to the

entire code i.e. it has full access to all of the software’s

possible behaviors. Thus, it does not need to guess or

understand behavior [15].

Static analysis also has its fair share of disadvantages like

production of false positives which have to be inspected later

on. Tools like Flawfinder, RATS, ITS4 report a large number

of false positives [16]. In order to perform a build, complete

access to source code or at least binary code is required.

Proficiency running software builds are characteristically

needed. Flaws connected to operational deployment

environments will not be detected [15].

3. STATIC ANALYSIS TOOLS FOR

SECURITY
Static analysis tools made for security are kind of programs

written to statically review the code for security-centric

analysis. These tools are used for automation of analysis work

to save energy as well as time. They may not always point out

actual defects and may not find all the defects but warn about

the presence of risk in some or the other form. They basically

aid manual approach of code [17][18].

3.1 Selection Criteria
Cppcheck, Flawfinder, and RATS have been selected for this

research. The thought behind their selection is to present

distinct approaches towards the same problem. The tools used

are open source/free as no financial budget is involved. These

tool selected are the latest ones amongst the open source static

analysis tools for security.

RATS and Flawfinder focus primarily on detecting security

vulnerabilities but on the other hand, Cppcheck offers much

wider analysis potential than both RATS and Flawfinder.

3.2 Description of Tools
The tools used for research are: RATS, Flawfinder and

Cppcheck. Little more discussion of the tools is done here.

3.2.1 RATS
Rough Auditing Tool for Security (RATS) is a tool for

auditing the source code developed in C, C++, Python, Perl,

and PHP. Secure Software Inc. developed it originally. It

figures out potential flaws related to security [19].

It does not uncover all the vulnerabilities present in the code

as well as it may point things as potential risks that are not

actually problems. This means it gives prominent number of

false positives as well as false negatives. So it is mainly to aid

manual inspection [19].

3.2.2 Flawfinder
Flawfinder is a static analysis tool for C/C++ programming

languages, mainly meant for security. It reports the potential

security vulnerabilities. It is compatible with CWE, officially.

This means along with the warnings it reports, Flawfinder also

reports CWE error code for that vulnerability. Author of this

tool is David A. Wheeler [20].

Flawfinder presents the vulnerabilities as “hits” which are

then sorted in descending order by their risk level. Risk level

can have integer values stretching from 0 to 5, where 0

indicates the minimum risk and 5 indicates very high risk

[20].

3.2.3 Cppcheck
Cppcheck is a tool used for static code analysis for

programming languages C/C++. It does not uncover the

syntax errors as the compiler does. It uncovers the errors and

warnings that the compilers generally skip. It is platform

independent and only requirement is enough memory space

and CPU to work. Daniel Marjamaki is the creator of this tool

as well as the lead developer [21].

It is generally not wrong about the errors it report but the

chances are there that it reports less number of errors that the

actual number of errors present in the code. This means it

aims at minimal false positives but can have many false

negatives [21].

4. DETECTION RATIO
Detection Ratio can be defined as a measure to judge the

effectiveness of an error detection tool. It is extremely useful

in scenarios where the error detection tools have to be

compared and rated on the basis of number of error categories

detected. Detection Ratio helps to give the programmer an

idea about which among the error detection tools being used

has a broader spectrum. Therefore it can be said that, Higher

the detection ratio, wider the scope of error detection tool

being considered. The following is the formula for detection

ratio:

(1)[22]

Its value varies from 0 to 1. The detection ratio is effective

when the error detection tools have to be determined

regardless of the type or category of error detected but on the

basis of the area of coverage for a tool. For example, if a

person wants to choose an error detection tools and he is clear

about a particular category he wants to detect, then detection

ratio may not help him. But if the person wants to choose a

tool that covers maximum range of errors or vulnerabilities,

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.13, August 2015

37

then detection ratio can be of great help for him and he should

go by higher value of detection ratio.

5. RESULTS AND ANALYSIS
The current section of the paper portrays the comparative

analysis of the tools selected. Detection ratio has been chosen

as the main parameter to compare these tools. To calculate

detection ratio, there was a need to first categorize the

vulnerabilities and check if a particular tool detects that

category of vulnerability or not. So vulnerability

categorization has been done and marked for each tool and

then detection ratio has been calculated.

For the purpose of comparative evaluation, the environment

had to be identical for all selected tools. Ubuntu 14.0.LTS was

chosen as the Operating System and C++ was chosen as the

programming language. The version of the tools used are the

latest ones and are: Cppcheck 1.69, RATS 2.4 and Flawfinder

1.31.

Different categories of vulnerabilities were intentionally

introduced in different C++ applications. These applications

were fed as input to all selected tools separately and outcomes

were marked and are shown in this section.

Table 1 displays the different categories of vulnerabilities that

were introduced in different applications. It has been tried to

introduce as many categories as possible from the domain of

each tool. Care has been taken that categories of any particular

tool were not concentrated upon.

After the vulnerabilities were introduced in the applications

and those were executed on each tool, the outcomes were

recorded. The outcomes are furnished with the help of tick

mark for detection of vulnerability and a cross mark of non-

detection.

Figure 1, Figure 2 and Figure 3 are the screenshots of the

tools. All the screenshots for all the categories have not been

shown here due to the limitation of space. So one screenshot

for each tool has been shown to give an idea that what kind of

errors or warnings the tools give and in what form.

Table 1. Categorization of Vulnerabilities and their

Detection

Code Category RATS Cppcheck Flawfinder

CWE

-20

Improper Input

Validation
√ √ √

CWE

-78

OS Command

Injection
√ × √

CWE

-120

Buffer Overflow √ √ √

Code Category RATS Cppcheck Flawfinder

CWE

-125

Array Index Out of

Bounds- Read
× √ ×

CWE

-134

Uncontrolled

Format String
√ × √

CWE

-190

Integer Overflow or

Wraparound
× × √

CWE

-250

Execution with

Unnecessary

Privileges

× × √

CWE

-327

Use of Broken or

Risky

Cryptographic

Algorithm

× × √

CWE

-338

Use of

Cryptographically

Weak Pseudo-

random Number

Generator

√ × √

CWE

-362

Race Condition × × √

CWE

-369

Divide by Zero × √ ×

CWE

-401

Memory Leak × √ ×

CWE

-561

Dead Code × √ ×

CWE

-785

Use of Path

Manipulation

Function without

Maximum Sized

Buffer

√ × ×

CWE

-787

Array Index Out of

Bounds- Write
× √ ×

CWE

-807

Reliance of

Untrusted Inputs in

a Security Decision

√ × ×

[23]

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.13, August 2015

38

Figure 1. Screenshot of RATS

Figure 2. Screenshot of Flawfinder

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.13, August 2015

39

Figure 3. Screenshot of Cppcheck

Total 16 categories of vulnerabilities were introduced and out

of which Cppcheck could detect 7; RATS could detect 7

whereas Flawfinder could detect 9 out of 16. Although the

count for both RATS and Cppcheck is same but this does not

mean that they detect the same categories. Only the count is

same but the detection of particular categories varies for both.

Equation (1) is used to calculate Detection Ratio. Table 2

shows the detection ratio calculated. The table presents the

picture of how the detection ratio varies.

Table 2. Detection Ratio

Tool

Number of

Vulnerabilities

Detected

Detection Ratio

RATS 7 7/16=0.4375

Cppcheck 7 7/16=0.4375

Flawfinder 9 9/16=0.5625

6. CONCLUSION
The prime intention of the research was to ease the choice of

static analysis tool for the developers or the testers. The main

parameter considered was the detection ratio that came out to

be highest for Flawfinder among the three tools under

consideration whereas for RATS and Cppcheck, it came out to

be same. This does not mean that the results will always be

same under all circumstances. The results may vary with the

variation of categories of vulnerabilities introduced. It has

been tried to include maximum categories from the domain of

each of these tools. Thus if one wants to go for detection of a

particular category of vulnerability, then he may go by

vulnerability categorization and detection or if he simply

wants the tool to have wide spectrum or wide coverage of

categories, then he may go by Detection ratio.

7. FUTURE WORK
Detection Ratio has been considered as a parameter to

evaluate three different tools. Many other parameters like

performance, accuracy, reliability, precision etc. over a larger

number of tools and taking different operating systems can

also be evaluated to further help testers in choosing the tool of

their choice.

8. REFERENCES
[1] McGraw, Gary, and John Viega. "Building Secure

Software." In RTO/NATO Real-Time Intrusion

Detection Symp. 2002.

[2] R. Jetley, B. Chelf. "Diagnosing Medical Device

Software Defects Using Static Analysis." Coverity.

Published in MD&DI (2009).

[3] H. K. Brar, P. J. Kaur, “Differentiating Integration

Testing and Unit Testing”, 2015 2nd International

Conference on Computing for Sustainable Global

Development (INDIACom), IEEE, pp. 796-798.

[4] Wang, J. A., Wang, H., Guo, M., & Xia, M., “Security

metrics for software system,” Proceedings of the 47th

Annual Southeast Regional Conference, pp. 47, New

York: ACM, 2009.

[5] P. Li, B. Cui. "A comparative study on software

vulnerability static analysis techniques and tools." In

Information Theory and Information Security (ICITIS),

2010 IEEE International Conference on, pp. 521-524.

IEEE, 2010.

[6] M. Mantere, I. Uusitalo, and Juha Röning. "Comparison

of static code analysis tools." In 2009 Third International

Conference on Emerging Security Information, Systems

and Technologies, pp. 15-22. IEEE, 2009.

[7] M. Howard and S. Lipner, “The Security Development

Lifecycle: SDL: A process for developing demonstrably

more secure software,” Microsoft Press, 2006, ISBN-13:

978-0735622142.

[8] B. Chess and J. West, “Secure programming with static

analysis,” Addison-Wesley, 2007, ISBN-13: 978-

0321424778.

[9] “On analyzing static analysis tools”, National security

Agency Center for Assured Software, July 26, 2011, pp.

1-13.

[10] A. German, “Software static code analysis lessons

learned,” Crosstalk, vol. 16, no. 11, 2003.

[11] Vincenzo Ciriello, Gabriella Carrozza and Stefano

Rosati, “Practical experience and evaluation of

continuous code static analysis with C++ test,” , In

Proceedings of the 2013 International Workshop on

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.13, August 2015

40

Joining AcadeMiA and Industry Contributions to testing

Automation, pp. 19-22, ACM New York, 2013.

[12] S. Lipner, “The trustworthy computing security

development lifecycle.” Proceedings of the 20th Annual

Computer Security Applications Conference (ACSAC),

2004.

[13] S.C. Johnson, “Lint, a C program checker” Computer

Science Tech. report 65, Bell Laboratories, 1978.

[14] Patrik Hellström, “Tools for static code analysis: A

survey,” Department of Computer and Information

Science, Linköping University, 2009.

[15] Dan Cornell, “Static analysis techniques for testing

application security,” OWASP San Antonio, 2008.

[16] Misha zitser, Richard Lippmann and Tim Leek, ‘Testing

static analysis tools using exploitable buffer overflows

from open source code,” ACM New York, 2004.

[17] S. Wagner, J. Jürjens, C. Koller, and P. Trischberger.

"Comparing bug finding tools with reviews and

tests." Lecture Notes in Computer Science 3502, 2005,

pp. 40-55.

[18] H.H. AlBreiki, and Q. H. Mahmoud. "Evaluation of

static analysis tools for software security." In Innovations

in Information Technology (INNOVATIONS), 2014

10th International Conference on, pp. 93-98. IEEE, 2014

[19] RATS Information Website. URL:

https://code.google.com/p/rough-auditing-tool-for-

security/

[20] Flawfinder Website. URL:

http://www.dwheeler.com/flawfinder/

[21] Cppcheck 1.69 Manual. URL:

http://cppcheck.sourceforge.net/manual.pdf

[22] M. A. A. Mamun, A. Khanam, H. Grahn, and R. Feldt.

"Comparing four static analysis tools for java

concurrency bugs." In Third Swedish Workshop on

Multi-Core Computing (MCC-10). 2010.

[23] Common Weakness Enumeration(CWE) website. URL:

https://cwe.mitre.org/

IJCATM : www.ijcaonline.org

