
International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.13, August 2015

25

High Speed Area Efficient 32 Bit Wallace Tree Multiplier

Keshaveni N.

Professor, ECE dept., KVG
College of Engineering Sullia,

Karnataka INDIA

ABSTRACT
A 32 bit high speed area efficient Wallace tree multiplier is

designed using verilog HDL and implemented in FPGA. The

circuit is designed using carry save adder architecture and

finally with one look ahead carry adder. The design is an

improved version of tree based Wallace tree multiplier

architecture. This paper aims at high speed multiplication and

an area efficient 32 bit Wallace tree multiplier. The entire

design is coded in Verilog HDL, simulated with Modelsim

and synthesized using Xilinx FPGA device. The result shows

that the proposed architecture takes very less time for

computing the multiplication of two 32 bit numbers. In terms

of area also, the proposed multiplier is much efficient than the

existing methods. The frequency of operation of the circuit is

200 MHz.

General Terms

Algorithm, Verilog code, Multipliers

Keywords

Carry save adder, FPGA, Modelsim simulator, Wallace tree

multiplier

1. INTRODUCTION
Multiplication is the basic arithmetic operation and is widely

used everywhere during computation. In digital signal

processing, most of the arithmetic operations require the use

of multiplications. The performance of three dimensional

computer graphics mostly depends on the performance of

multiplications. Therefore, there has been much work on

advanced multiplication algorithms and design also. Critical

factors in the design of multipliers are chip area and speed of

multiplication. There is highly demand of high-speed

multiplications and require less hardware. The performance of

multiplier is affected by the multiplication strategy and type

of the multiplier used.

2. MULTIPLICATION

METHODOLOGY
The use of carry save adder, to perform multiplication, first

calculates the partial products of the multiplication, and then

input them to the carry-save adder. For example, consider the

multiplication of binary values 011010 and 110101. It

generates partial products as shown Figure 1. The partial

products are input to two carry-save adders at the top of the

Wallace Tree as shown in Figure 2.

The 6-bit Wallace Tree multiplier, with partial products and

final results for this example, is also shown in Figure 2. The

partial products are fed to the carry-save adders which

generates sum and carry outputs. These outputs are combined

using additional carry-save adders until only two outputs are

left at the end. These values are added using a parallel adder

to produce the final product.

Fig 1 : Generation of partial products

Fig 2 : 6 bit Wallace tree

3. CARRY SAVE ADDER CONCEPT
A carry-save adder can add three values simultaneously,

instead of just two. However, it does not output a single result.

Instead, it outputs both a sum and a set of carry bits. The

carry-save adder is essentially a group of full adders, each of

which adds the bits in the same position of its three input sum

operands. The full adder that adds bit i of its operands outputs

bit Si and carry bit Ci+1. Because the carry bits do not

propagate through the adder, it is faster than parallel adders.

Unlike the parallel adder, though, it does not produce a final

sum of its inputs. A carry-save adder can add three values

simultaneously, instead of just two. However, it does not

output a single result. Instead, it outputs both a sum and a set

of carry bits.

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.13, August 2015

26

Fig 3: The Carry save adder block resembles the full

adder circuit

Fig 4: One CSA block is used for each bit. This circuit

adds three N = 8 bit numbers together into two new

numbers

The computation of sum s and carry c is as follows: It is

actually identical to the full adder, but with some of the

signals renamed. Figure 3 shows a full adder and a carry save

adder. A carry save adder simply is a full adder with the cin

input renamed as z, the z output (the original “answer” output)

renamed to s, and the cout output renamed to c.

Figure 4 shows how n carry save adders are arranged to add

three n bit numbers x, y and z into two numbers c and s. Note

that the CSA block in bit position zero generates c1, not c0.

Similar to the least significant column when adding numbers

by hand (the “blank”), c0 is equal to zero. Note that all of the

CSA blocks are independent, thus the entire circuit takes only

O (1) time. To get the final sum, we still need a Look ahead

carry adder (LCA), which will cost us O (log n) delay. The

asymptotic gate delay to add three n-bit numbers is thus the

same as adding only two n-bit numbers. Therefore, the

numbers that go to the LCA will be at most (n + m – 2) bits

long, where m is the total numbers to be added and n is the

number of bits in each number. So the final LCA will have a

gate delay of O(log (n + m)). Therefore the total gate delay is

O(m + log (n + m)) instead of arranging the CSA blocks in a

chain, a tree formation can actually be used. In the present
work a 32 bit Wallace tree multiplier is designed and coded in

verilog, test bench is written and simulated using Modelsim

simulator, implemented in FPGA, and the results are

compared with the existing methodologies.

4. RESULTS AND CONCLUSION
The entire design of a 32 bit Wallace tree multiplier is coded

in verilog and implemented in Xilinx FPGA. The RTL

schematic view of the design is presented in figure 5. Test

bench is written and different combinations of inputs are

taken, simulated using Modelsim simulator. From the

simulation results of figure 6, it can be seen that initially, the

inputs taken are decimal 0 and 0, next number is 1 and 7, the

next is 7 and 7. The design is a synchronous design with

respect to clock signal “clk”. From the waveform shown in

figure 6, it can be observed that, it takes only 5ns time to get

the first multiplied output. Similrly from the figure 7 it can be

seen that consecutive multiplications takes only 5ns time.

Therefore the maximum frequency of operation is 200MHz.

The device utilization summary is shown in figure 8. The

target FPGA device is Virtex5 xc5vlx330. It can be seen from

figure 8, the total gate count of the design is 14,720 and slice

LUTs 2044.

Fig 5: RTL schematic of multiplier

Table 1. Area comparison

Type of multiplier Width Slice LUTs

used

Modified booth multiplier

(Radix 8)

32 bit 2721

Booth recoder multiplier 32 bit 2704

Proposed method 32 bit 2044

Table II. Delay comparison

Type of multiplier Width Delay (ns)

Multiplier using Vedic

mathematics

16 bit 13.452

Modified Booth

multiplier

(Radix-8)

32 bit 11.564

Booth recoder multiplier 32 bit 9.536

Proposed method 32 bit 5

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.13, August 2015

27

Fig 6: Simulation waveform of multiplier

Fig 7: Simulation waveform of multiplier

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.13, August 2015

28

Fig 8: Device utilization summary

The present work is area efficient and faster than the existing

methods. One of the authors [6] reported that the total number

of slice LUTs for a 32 bit Wallace tree multiplier is 2704.

Table I shows the comparison of the area of various types of

Wallace tree multipliers and Table II shows the comparison in

terms of delay of the various Wallace tree multipliers.

Therefore comparing these results with the present work, it

can be concluded that the present work is area efficient and

faster than the existing methods. Also, it can be seen that, in

the present work, the time required for 32 bit Wallace tree

multiplication, 5 ns, is not yet reported in the literature. In

future, the design can also be focused on floating point

multiplication.

5. REFERENCES
[1] King Fai Pang, IEEE 1990, Architecture for pipelined

Wallace tree multiplier- accumulators.

[2] Akther S, European conference oncircuit theory and

design, August 2007, VHDL implementation of fast NxN

multiplier based on vedic mathematics.

[3] C Vinoth, V S Kanchana Bhaskaran, IEEE 2011, A novel

low power and high speed wallace tree multiplier for

RISC Processor.

[4] N Surekha, R Porselvi, K K Kumuthapriya, 2012, An

efficient high speed wallace tree multiplier.

[5] Monika Vaishnav, October 2012, Volume 1, No.1,

IJISCS, Design of multi-precision reconfigurable

Wallace Tree Multiplier for high performance

applications.

[6] Jagadeshwar Rao M, Sanjay Dubey, Asia Pacific

conference 2012, A high speed and area efficient booth

encoded Wallace tree multiplier for fast arithmetic

circuits.

[7] Rahul D Kshirasagar, Aishwarya.E.V, Ahire Shashank

Vishwanath, P Jayakrishnan, IEEE 2013, Implementation

of pipelined booth encoded Wallace tree multiplier

architecture.

[8] Damarla Paradhasaradhi, N Prashanti, N Vivek, IEEE

2013, Modified Wallace tree multiplier using efficient

square root carry select adder.

[9] M Ravindra Kumar, August 2013, International journal

of innovative research and studies, ISSN 2319-9725,

Design and implementation of 32*32 bit high level

Wallace tree multiplier.

[10] Kartikeya Bhardwaj, Praveen S, IEEE 2014, Power and

area efficient approximate wallace tree multiplier for

error resilient systems.

.

IJCATM : www.ijcaonline.org

