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ABSTRACT 

The problem of motif discovery has been studied extensively 

over the last few decades. Many sequential and parallel 

algorithms have been proposed and studied. A significant 

runtime is still required for several challenging instances of 

the motif search problem. This paper studies parameter spaces 

to find an optimal point for load balancing between the master 

and the worker processes, which are collaboratively and 

concurrently searching for motifs. Extensive experiments 

have been carried out on the state-of-the-art TACC Stampede 

System. The results demonstrated that a workload from the 

parallel motif discovery problem is best divided between the 

master and worker processes by having the master process 

worked on the first 
     

 
 nucleotides in the DNA sequences, 

where l is the total length of the input DNA sequences, before 

passing the remaining work to the worker process. In addition, 

the results also shown that the latency tolerance techniques 

used in the implementation of this work is effective because 

of the almost linear speedup obtained. 
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1. INTRODUCTION 
In computational genomics, motif is a recurring pattern of 

nucleotides in DNA that has, or presumed to have, a 

biological significance [1]. The planted motif search (PMS) 

problem was introduced to aid the innovation of algorithms 

for discovering motifs in a set of DNA sequences [2]. The 

PMS problem can be defined as follows. Given a set of n 

DNA sequences (each with length m), find all k motifs (each 

with length l where l ≤ m and each with at most d positions of 

mismatch) that appear as a subset in all of the n DNA 

sequences. Thus, the PMS problem is also known as the (l,d)-

motif search problem. For example, given a set of three DNA 

sequences (n=3), each with length m=10 (i.e., 

ACTGACGCAG, TCACAACGGG, and GAGTCCAGTT), 

there are four motifs of length l=4 with at most d=1 position 

of mismatch (i.e., ACAG, CAGA, CCCA, and TCAG).  

While numerous algorithms for the PMS problem have been 

proposed and studied [3], there are several challenging 

instances of this problem that still cannot be solved (or 

required significant amount of time to solve). For example, 

(26,11)-motif search problem still needs more than twelve 

hours of execution time on 48 CPU cores and (28,12) requires 

more than 27 hours to complete on the same number of cores 

using the most efficient algorithm to date [4]. Thus, an 

improvement over the existing algorithms is still essential. 

While past research works have focused on improving the 

algorithms [4], [5], [6], [7], [8], [9], [10], and on designing 

hardware accelerators [11], [12], [13], [14], [15], for motif 

discovery, none of them focused on the load balancing issues 

between the master and the worker processes in the parallel 

execution. To the best of our knowledge this is the first paper 

that explored and evaluated all parameters of the parallel 

motif discovery problem to find the right balance for 

workload distributions. 

In this paper, a simple parallel motif discovery program was 

designed and implemented for exploring and evaluating the 

influences of each parameter in the motif search problem. 

These parameters include the length of motifs, the number of 

input DNA sequences, the allowable Hamming distance, the 

pivot for partitioning a workload between the master and the 

worker processes, and finally, the number of processor cores. 

A comprehensive set of experiments was carried out on 

Stampede System at the Texas Advanced Computing Center. 

The results demonstrated that the proposed simple parallel 

motif discovery program yields linear speedup as the number 

of processor cores increases. Furthermore, the results also 

indicated that a workload should be divided almost evenly 

between the master and the worker processes.    

The rest of this paper is organized as follows. A concise 

summary on the PMS problem is provided in Section 2. An 

overview on the implementation of parallel motif discovery 

algorithm is described in Section 3. The experimental setup 

and results are discussed in Section 4. The findings are 

summarized in Section 5.     

2. PLANTED MOTIF SEARCH 
Planted motif search (PMS) problem was formulated by 

Pevzner and Sze [2]. The PMS problem has been influential in 

the development of several algorithms for finding a recurring 

pattern in DNA sequences and has since been applied to other 

biological sequences, such as RNA and protein sequences. 

In PMS problem, S = {s1, s2, …, sn} is defined as a set of DNA 

sequences. A de facto standard from prior work assumed 

twenty DNA sequences (i.e., n=20). Each DNA sequence (si) 

consists of four nucleobases called adenine (A), cytosine (C), 

guanine (G), and thymine (T) of length m, which is typically 

set to 600 (i.e, m=600). A recurring pattern of nucleobases 

with at most d mismatched positions found in all of these 

DNA sequences is called a motif. The length of nucleobases in 

a discovered motif is defined through an l parameter, where 0 

≤ d ≤ l ≤ m. The goal of PMS is finding all motifs in the given 

DNA sequences that satisfy both l and d parameters. This is a 

computational and data intensive task. A brute force method 

considered all 4l possible candidates for motifs against n(m-l) 

subsequences from the given set of DNA sequences. The 

search space can be drastically reduced from 4l to by simply 

taking into account the fact that all motifs must have at most d 
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mismatched positions from the given DNA sequences. 

Specifically, instead of generating all 4l possible candidates 

from scratch, we can generate candidate motifs from one of 

the DNA sequences, limiting the search space to   
 
 3(m-l). 

This idea formed the basis of the design and implementation 

of our simple parallel motif discovery program, which is 

presented in the next section.  

3. PARALLEL MOTIF DISCOVERIES 
The main goal of the algorithms is finding all motifs that are 

within a given Hamming distance (d) from all of the input 

DNA sequences. The algorithm uses the master process to 

search the space of DNA sequences within a Hamming 

distance d from the first input DNA sequence by going 

through all permutations from the least significant nucleotide 

position (i.e., the rightmost nucleotide) to the (x-1)th position, 

where x is a constant that is smaller than the length of DNA 

sequences (l). The worker process then searches the remaining 

space of DNA sequences within a Hamming distance d from 

the first input DNA sequence by going through all 

permutations from the xth position to the (l-1)th position (i.e. 

the leftmost nucleotide).  

Computational concurrency in the master and the worker 

processes is achieved through an immediate dispatch of work 

on each permutation from the master process to one of the 

worker processes. The master process dispatches two rounds 

of work to all worker processes (if there are enough work to 

go around) using non-blocking communication and moving 

forward to perform its own portion of the work. Each worker 

process started working on its part of the work immediately 

upon receiving the first assigned work from the master 

process and also using non-blocking communication to 

receive an additional work from the master process. When a 

worker process finished each of its assigned works, the results 

are sent back to the master process before continuing with the 

next assigned work, if any. Upon receiving the results, the 

master process dispatches the next assignment to the worker 

process that has sent in the results. Dynamically distributed 

the workload across the worker processes. This routine is 

repeated until there are no work left and termination messages 

are sent from the master process to the worker processes.  

The non-blocking communication was used to send assigned 

work from the master process to the worker processes. This 

non-blocking send operation is overlapped with the work that 

the master process itself has to perform, which includes 

checking a potential result against the remaining input DNA 

sequences (i.e., all input DNA sequences except the first one) 

as well as generating the next potential result. Thus, 

overlapping of computation and communication is achieved in 

the master process. 

On the side of worker processes, the non-blocking 

communication was also deployed for receiving assigned 

work (after the very first assigned work was received through 

a blocking receive call). This non-blocking receive operation 

is overlapped with the work that each worker process has to 

perform (based on the previous assigned work received), 

which includes generating and checking all potential results 

against the remaining input DNA sequences as well as 

sending the results back to the master. Thus, overlapping of 

computation and communication is also achieved in the 

worker process. 

The message tag in the MPI calls was used for indicating the 

type of messages between the master and the worker 

processes. In particular, message tag with value 0 is used for 

indicating that there are no work left to assign (i.e., 

termination message), 1 for sending assigned work from the 

master process to the worker processes, 2 for sending the size 

of results from the worker processes to the master process, 

and finally, 3 for sending the results from the worker 

processes to the master process. 

4. RESULTS AND DISCUSSIONS 
The experiments were carried out on two 16-core nodes of the 

TACC Stampede System. Each node has two 8-core Xeon E5 

processors with 32GB of DDR3 RAM (2GB per core), 

running the CentOS version 6.3 with the 2.6.32 x86_64 Linux 

kernel. These nodes are connected via InfiniBand (56 Gbps). 

Each of the Xeon E5 core is running at 2.7GHz. The code was 

developed in C/C++ and compiled with MPICXX for 

MVAPICH2 version 1.9a2. All results came from an average 

of data collected from three independent runs. 

The first set of experiments was carried out on 11 different 

input sets with varying numbers of input sequences (n), 

ranging from 5 to 15. The other parameters are fixed with 

l=38, d=10, x=19, and p=32, where l is the length of each 

input sequence, d is the maximum mismatched positions, x is 

the length of input sequence covered by the master process 

before passing on the remaining work to the worker process, 

and p is the number of processor cores. The runtime and 

speedup plots from this first set of experiments are presented 

in Figures 1 and 2, respectively. These results indicated that 

the runtime increases as the problem size grows. It also 

showed that when the problem size is sufficiently large 

(n=15) the performance is close to linear speedup (i.e., 29.41 

times with 32 processor cores deployed). 

 

Fig 1: Runtime plot under different input n sizes 

 

Fig 2: Speedup plot under different input n sizes 

The second set of experiments deals with different length (l) 

of the input DNA sequences, ranging from 38 to 48. The other 

parameters are fixed (i.e., n=5, d=10, x=19, and p=32). The 

runtime and speedup plots from this set of experiments are 

presented in Figures 3 and 4, respectively. These results 
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indicated that the runtime increases as the problem size grows. 

It also showed that the peak performance is obtained when the 

problem size (l) is slightly larger than a doubling of the fixed 

parameter x. Specifically, the performance is close to linear 

speedup at 28.77 times with 32 processor cores deployed 

when l=41 and the fixed parameter is x=19 in this case. 

 

Fig 3: Runtime plot under different input l sizes 

 

Fig 4: Speedup plot under different input l sizes 

The third set of experiments deals with different Hamming 

distances (d) in the given input, ranging from 8 to 12. The 

other parameters are fixed (i.e., n=5, l=38, x=19, and p=32). 

The runtime and speedup plots from this set of experiments 

are presented in Figures 5 and 6, respectively. The results 

came from an average of data collected from three 

independent runs. These results indicated that the runtime 

increases drastically as the search space grows due to an 

increase of Hamming distance. It also showed that when the 

problem size is sufficiently large (d=12) the performance is 

close to linear speedup (i.e., 30.26 times with 32 processor 

cores deployed). 

 

Fig 5: Runtime plot under different Hamming distance d 

 

Fig 6: Speedup plot under different Hamming distance d 

The next set of experiments deals with different values of 

parameter x, ranging from 1 to 24. The other parameters are 

fixed (i.e., n=5, l=38, d=12, and p=32). The runtime and 

speedup plots from this set of experiments are presented in 

Figures 11 and 12, respectively. The results came from an 

average of data collected from three independent runs. These 

results indicated that the runtime decreases drastically as the 

value of parameter x increases. This is because of a balance in 

parallel workload distribution between the master and the 

worker processes. The workload for the master process 

increases as the value of parameter x increases. The point of 

balance (also observed earlier in the results from the second 

set of experiments) is around where the value of l is slightly 

higher than doubling of the parameter x’s value. The speedup 

plot in Figure 8 showed that when x=17 the performance is 

closest to linear speedup (i.e., 29.44 times with 32 processors 

deployed) for this input set where l=38. 

The fifth set of experiments deals with different number of 

processors deployed for parallel execution, ranging from p=1 

to p=32. The other parameters are fixed (i.e., n=5, l=38, 

d=12, and x=19). The runtime and speedup plots from this set 

of experiments are presented in Figures 13 and 14, 

respectively. The results came from an average of data 

collected from three independent runs. These results indicated 

that the runtime decreases drastically at the beginning when 

the number of processor cores increases from one to four 

cores. The reduction in runtime is less significant as the 

number of cores getting closer to 32. However, the speedup 

plot presented a different story as the speedup continues to 

increase consistently and gradually as the number of processor 

cores increases, peaking at 29.7 times with 32 processor cores 

deployed. 

Four additional sets of experiments were carried out to find a 

value of parameter x that yields the highest performance. The 

experiments were carried out with various ranges of values for 

parameter x using 4 different input sets with different values 

of l and d.  

 

Fig 7: Runtime plot under different value of parameter x 
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The first set of experiments used an input set with the 

following parameters n=5, l=54, and d=10. The program was 

executed on 32 processor cores (i.e., p=32). The value of 

parameter x was ranging from 22 to 31. The runtime plot from 

this set of experiments is shown in Figure 7. It showed that 

the highest performance is obtained when x=25. 

 

Fig 8: Runtime plot under different value of parameter x 

The second set of experiments used an input set with the 

following parameters n=5, l=60, and d=10. The program was 

also executed on 32 processors (i.e., p=32). The value of 

parameter x was ranging from 22 to 31. The runtime plot from 

this set of experiments is shown in Figure 8. It showed that 

the highest performance is obtained when x=28. 

 

Fig 9: Runtime plot under different value of parameter x 

The third set of experiments used an input set with the 

following parameters n=5, l=38, and d=10. The program was 

executed on 8 processors (i.e., p=8). The value of parameter x 

was ranging from 13 to 22. The runtime plot from this set of 

experiments is shown in Figure 9. It showed that the highest 

performance is obtained when x=17 and x=18. 

Finally, the last set of experiments used an input set with the 

following parameters n=5, l=38, and d=12. The program was 

executed on 8 processors (i.e., p=8). The value of parameter x 

was also ranging from 13 to 22. The runtime plot from this set 

of experiments is shown in Figure 10. It showed that the 

highest performance is obtained when x=18. 

 

Fig 10: Runtime plot under different value of parameter x 

Based on these experimental results, it seems the value of 

parameter x for the highest performance is approximately 

equal to 
     

 
 , where l is the length of input DNA sequences. 

This is perhaps due to the fact that this formula, when used to 

determine the value of x, divided the workload almost evenly 

between the master and all worker processes with a slightly 

less work for the master process since it is the center of 

communication processing and results accumulation. 

5. CONCLUSION 
The planted motif search problem is an essential framework 

for exploring and developing algorithms for finding repeated 

recurring patterns in DNA, RNA, and protein sequences. 

Parallel motif discovery enabled a harvesting of the 

computing power made available by the multicore platforms. 

A common master-worker model of workload distribution 

may lead to load imbalance. Research work in this paper 

demonstrated that non-blocking communication operations 

can be used to implement latency tolerance techniques by 

overlapping communication with computation. Furthermore, 

an extensive set of experimental studies also showed that load 

balancing can be achieved by dividing the workload almost 

evenly between the master and the worker processes. 

There are several possible future works to further improve the 

efficiency of parallel motif discoveries. First, decentralization 

of task scheduler may help alleviating a bottleneck on the 

centralized master processor core in the current design and 

implementation. Tree-based structures such as binary tree and 

binomial spanning tree can be adopted for this purpose as 

shown in the implementation of a decentralized barrier 

synchronization operation [16].  

Second, given that the runtime of parallel motif discovery 

program can span days, a checkpoint/restart support is 

beneficial since it reduces the cost and time for re-

computation should a failure (or failures) occurred. Past 

research work has shown that checkpoint creation library such 

as BLCR can be deployed for this purpose and Pin-based tool 

can be developed to reduce its overhead further [17]. 

Finally, with an increasing number of processor cores in each 

computing node, a design and implementation of parallel 

motif discovery program utilizing both multithreading and 

message-passing operations should be explored to reduce the 

cost of memory consumption and the amount of data transfer 

between processes residing on different cores within the same 

computing node. The current approach only utilizes message-

passing operations, and therefore, data transfer is invoked 

even when both the sender and receiver are locating on the 

same computing node.   
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8. APPENDIX 
 

 

Fig 11: Runtime plot under different value of parameter x 

 

Fig 12: Speedup plot under different value of parameter x 
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Fig 13: Runtime plot under different number of processor cores (p) 

 

 

Fig 14: Speedup plot under different number of processor cores (p) 
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