
International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.13, August 2015

29

Load Balancing for Parallel Motif Discoveries

Angkul Kongmunvattana

School of Computer Science
Columbus State University

4225 University Avenue, Columbus, GA 31907 USA

ABSTRACT

The problem of motif discovery has been studied extensively

over the last few decades. Many sequential and parallel

algorithms have been proposed and studied. A significant

runtime is still required for several challenging instances of

the motif search problem. This paper studies parameter spaces

to find an optimal point for load balancing between the master

and the worker processes, which are collaboratively and

concurrently searching for motifs. Extensive experiments

have been carried out on the state-of-the-art TACC Stampede

System. The results demonstrated that a workload from the

parallel motif discovery problem is best divided between the

master and worker processes by having the master process

worked on the first

 nucleotides in the DNA sequences,

where l is the total length of the input DNA sequences, before

passing the remaining work to the worker process. In addition,

the results also shown that the latency tolerance techniques

used in the implementation of this work is effective because

of the almost linear speedup obtained.

General Terms

Bioinformatics, Computational Genomics, DNA Sequence,

Parallel Computing

Keywords

Latency Tolerance, Load Balancing, Message Passing, Motif

Discovery

1. INTRODUCTION
In computational genomics, motif is a recurring pattern of

nucleotides in DNA that has, or presumed to have, a

biological significance [1]. The planted motif search (PMS)

problem was introduced to aid the innovation of algorithms

for discovering motifs in a set of DNA sequences [2]. The

PMS problem can be defined as follows. Given a set of n

DNA sequences (each with length m), find all k motifs (each

with length l where l ≤ m and each with at most d positions of

mismatch) that appear as a subset in all of the n DNA

sequences. Thus, the PMS problem is also known as the (l,d)-

motif search problem. For example, given a set of three DNA

sequences (n=3), each with length m=10 (i.e.,

ACTGACGCAG, TCACAACGGG, and GAGTCCAGTT),

there are four motifs of length l=4 with at most d=1 position

of mismatch (i.e., ACAG, CAGA, CCCA, and TCAG).

While numerous algorithms for the PMS problem have been

proposed and studied [3], there are several challenging

instances of this problem that still cannot be solved (or

required significant amount of time to solve). For example,

(26,11)-motif search problem still needs more than twelve

hours of execution time on 48 CPU cores and (28,12) requires

more than 27 hours to complete on the same number of cores

using the most efficient algorithm to date [4]. Thus, an

improvement over the existing algorithms is still essential.

While past research works have focused on improving the

algorithms [4], [5], [6], [7], [8], [9], [10], and on designing

hardware accelerators [11], [12], [13], [14], [15], for motif

discovery, none of them focused on the load balancing issues

between the master and the worker processes in the parallel

execution. To the best of our knowledge this is the first paper

that explored and evaluated all parameters of the parallel

motif discovery problem to find the right balance for

workload distributions.

In this paper, a simple parallel motif discovery program was

designed and implemented for exploring and evaluating the

influences of each parameter in the motif search problem.

These parameters include the length of motifs, the number of

input DNA sequences, the allowable Hamming distance, the

pivot for partitioning a workload between the master and the

worker processes, and finally, the number of processor cores.

A comprehensive set of experiments was carried out on

Stampede System at the Texas Advanced Computing Center.

The results demonstrated that the proposed simple parallel

motif discovery program yields linear speedup as the number

of processor cores increases. Furthermore, the results also

indicated that a workload should be divided almost evenly

between the master and the worker processes.

The rest of this paper is organized as follows. A concise

summary on the PMS problem is provided in Section 2. An

overview on the implementation of parallel motif discovery

algorithm is described in Section 3. The experimental setup

and results are discussed in Section 4. The findings are

summarized in Section 5.

2. PLANTED MOTIF SEARCH
Planted motif search (PMS) problem was formulated by

Pevzner and Sze [2]. The PMS problem has been influential in

the development of several algorithms for finding a recurring

pattern in DNA sequences and has since been applied to other

biological sequences, such as RNA and protein sequences.

In PMS problem, S = {s1, s2, …, sn} is defined as a set of DNA

sequences. A de facto standard from prior work assumed

twenty DNA sequences (i.e., n=20). Each DNA sequence (si)

consists of four nucleobases called adenine (A), cytosine (C),

guanine (G), and thymine (T) of length m, which is typically

set to 600 (i.e, m=600). A recurring pattern of nucleobases

with at most d mismatched positions found in all of these

DNA sequences is called a motif. The length of nucleobases in

a discovered motif is defined through an l parameter, where 0

≤ d ≤ l ≤ m. The goal of PMS is finding all motifs in the given

DNA sequences that satisfy both l and d parameters. This is a

computational and data intensive task. A brute force method

considered all 4l possible candidates for motifs against n(m-l)

subsequences from the given set of DNA sequences. The

search space can be drastically reduced from 4l to by simply

taking into account the fact that all motifs must have at most d

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.13, August 2015

30

mismatched positions from the given DNA sequences.

Specifically, instead of generating all 4l possible candidates

from scratch, we can generate candidate motifs from one of

the DNA sequences, limiting the search space to

 3(m-l).

This idea formed the basis of the design and implementation

of our simple parallel motif discovery program, which is

presented in the next section.

3. PARALLEL MOTIF DISCOVERIES
The main goal of the algorithms is finding all motifs that are

within a given Hamming distance (d) from all of the input

DNA sequences. The algorithm uses the master process to

search the space of DNA sequences within a Hamming

distance d from the first input DNA sequence by going

through all permutations from the least significant nucleotide

position (i.e., the rightmost nucleotide) to the (x-1)th position,

where x is a constant that is smaller than the length of DNA

sequences (l). The worker process then searches the remaining

space of DNA sequences within a Hamming distance d from

the first input DNA sequence by going through all

permutations from the xth position to the (l-1)th position (i.e.

the leftmost nucleotide).

Computational concurrency in the master and the worker

processes is achieved through an immediate dispatch of work

on each permutation from the master process to one of the

worker processes. The master process dispatches two rounds

of work to all worker processes (if there are enough work to

go around) using non-blocking communication and moving

forward to perform its own portion of the work. Each worker

process started working on its part of the work immediately

upon receiving the first assigned work from the master

process and also using non-blocking communication to

receive an additional work from the master process. When a

worker process finished each of its assigned works, the results

are sent back to the master process before continuing with the

next assigned work, if any. Upon receiving the results, the

master process dispatches the next assignment to the worker

process that has sent in the results. Dynamically distributed

the workload across the worker processes. This routine is

repeated until there are no work left and termination messages

are sent from the master process to the worker processes.

The non-blocking communication was used to send assigned

work from the master process to the worker processes. This

non-blocking send operation is overlapped with the work that

the master process itself has to perform, which includes

checking a potential result against the remaining input DNA

sequences (i.e., all input DNA sequences except the first one)

as well as generating the next potential result. Thus,

overlapping of computation and communication is achieved in

the master process.

On the side of worker processes, the non-blocking

communication was also deployed for receiving assigned

work (after the very first assigned work was received through

a blocking receive call). This non-blocking receive operation

is overlapped with the work that each worker process has to

perform (based on the previous assigned work received),

which includes generating and checking all potential results

against the remaining input DNA sequences as well as

sending the results back to the master. Thus, overlapping of

computation and communication is also achieved in the

worker process.

The message tag in the MPI calls was used for indicating the

type of messages between the master and the worker

processes. In particular, message tag with value 0 is used for

indicating that there are no work left to assign (i.e.,

termination message), 1 for sending assigned work from the

master process to the worker processes, 2 for sending the size

of results from the worker processes to the master process,

and finally, 3 for sending the results from the worker

processes to the master process.

4. RESULTS AND DISCUSSIONS
The experiments were carried out on two 16-core nodes of the

TACC Stampede System. Each node has two 8-core Xeon E5

processors with 32GB of DDR3 RAM (2GB per core),

running the CentOS version 6.3 with the 2.6.32 x86_64 Linux

kernel. These nodes are connected via InfiniBand (56 Gbps).

Each of the Xeon E5 core is running at 2.7GHz. The code was

developed in C/C++ and compiled with MPICXX for

MVAPICH2 version 1.9a2. All results came from an average

of data collected from three independent runs.

The first set of experiments was carried out on 11 different

input sets with varying numbers of input sequences (n),

ranging from 5 to 15. The other parameters are fixed with

l=38, d=10, x=19, and p=32, where l is the length of each

input sequence, d is the maximum mismatched positions, x is

the length of input sequence covered by the master process

before passing on the remaining work to the worker process,

and p is the number of processor cores. The runtime and

speedup plots from this first set of experiments are presented

in Figures 1 and 2, respectively. These results indicated that

the runtime increases as the problem size grows. It also

showed that when the problem size is sufficiently large

(n=15) the performance is close to linear speedup (i.e., 29.41

times with 32 processor cores deployed).

Fig 1: Runtime plot under different input n sizes

Fig 2: Speedup plot under different input n sizes

The second set of experiments deals with different length (l)

of the input DNA sequences, ranging from 38 to 48. The other

parameters are fixed (i.e., n=5, d=10, x=19, and p=32). The

runtime and speedup plots from this set of experiments are

presented in Figures 3 and 4, respectively. These results

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.13, August 2015

31

indicated that the runtime increases as the problem size grows.

It also showed that the peak performance is obtained when the

problem size (l) is slightly larger than a doubling of the fixed

parameter x. Specifically, the performance is close to linear

speedup at 28.77 times with 32 processor cores deployed

when l=41 and the fixed parameter is x=19 in this case.

Fig 3: Runtime plot under different input l sizes

Fig 4: Speedup plot under different input l sizes

The third set of experiments deals with different Hamming

distances (d) in the given input, ranging from 8 to 12. The

other parameters are fixed (i.e., n=5, l=38, x=19, and p=32).

The runtime and speedup plots from this set of experiments

are presented in Figures 5 and 6, respectively. The results

came from an average of data collected from three

independent runs. These results indicated that the runtime

increases drastically as the search space grows due to an

increase of Hamming distance. It also showed that when the

problem size is sufficiently large (d=12) the performance is

close to linear speedup (i.e., 30.26 times with 32 processor

cores deployed).

Fig 5: Runtime plot under different Hamming distance d

Fig 6: Speedup plot under different Hamming distance d

The next set of experiments deals with different values of

parameter x, ranging from 1 to 24. The other parameters are

fixed (i.e., n=5, l=38, d=12, and p=32). The runtime and

speedup plots from this set of experiments are presented in

Figures 11 and 12, respectively. The results came from an

average of data collected from three independent runs. These

results indicated that the runtime decreases drastically as the

value of parameter x increases. This is because of a balance in

parallel workload distribution between the master and the

worker processes. The workload for the master process

increases as the value of parameter x increases. The point of

balance (also observed earlier in the results from the second

set of experiments) is around where the value of l is slightly

higher than doubling of the parameter x’s value. The speedup

plot in Figure 8 showed that when x=17 the performance is

closest to linear speedup (i.e., 29.44 times with 32 processors

deployed) for this input set where l=38.

The fifth set of experiments deals with different number of

processors deployed for parallel execution, ranging from p=1

to p=32. The other parameters are fixed (i.e., n=5, l=38,

d=12, and x=19). The runtime and speedup plots from this set

of experiments are presented in Figures 13 and 14,

respectively. The results came from an average of data

collected from three independent runs. These results indicated

that the runtime decreases drastically at the beginning when

the number of processor cores increases from one to four

cores. The reduction in runtime is less significant as the

number of cores getting closer to 32. However, the speedup

plot presented a different story as the speedup continues to

increase consistently and gradually as the number of processor

cores increases, peaking at 29.7 times with 32 processor cores

deployed.

Four additional sets of experiments were carried out to find a

value of parameter x that yields the highest performance. The

experiments were carried out with various ranges of values for

parameter x using 4 different input sets with different values

of l and d.

Fig 7: Runtime plot under different value of parameter x

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.13, August 2015

32

The first set of experiments used an input set with the

following parameters n=5, l=54, and d=10. The program was

executed on 32 processor cores (i.e., p=32). The value of

parameter x was ranging from 22 to 31. The runtime plot from

this set of experiments is shown in Figure 7. It showed that

the highest performance is obtained when x=25.

Fig 8: Runtime plot under different value of parameter x

The second set of experiments used an input set with the

following parameters n=5, l=60, and d=10. The program was

also executed on 32 processors (i.e., p=32). The value of

parameter x was ranging from 22 to 31. The runtime plot from

this set of experiments is shown in Figure 8. It showed that

the highest performance is obtained when x=28.

Fig 9: Runtime plot under different value of parameter x

The third set of experiments used an input set with the

following parameters n=5, l=38, and d=10. The program was

executed on 8 processors (i.e., p=8). The value of parameter x

was ranging from 13 to 22. The runtime plot from this set of

experiments is shown in Figure 9. It showed that the highest

performance is obtained when x=17 and x=18.

Finally, the last set of experiments used an input set with the

following parameters n=5, l=38, and d=12. The program was

executed on 8 processors (i.e., p=8). The value of parameter x

was also ranging from 13 to 22. The runtime plot from this set

of experiments is shown in Figure 10. It showed that the

highest performance is obtained when x=18.

Fig 10: Runtime plot under different value of parameter x

Based on these experimental results, it seems the value of

parameter x for the highest performance is approximately

equal to

 , where l is the length of input DNA sequences.

This is perhaps due to the fact that this formula, when used to

determine the value of x, divided the workload almost evenly

between the master and all worker processes with a slightly

less work for the master process since it is the center of

communication processing and results accumulation.

5. CONCLUSION
The planted motif search problem is an essential framework

for exploring and developing algorithms for finding repeated

recurring patterns in DNA, RNA, and protein sequences.

Parallel motif discovery enabled a harvesting of the

computing power made available by the multicore platforms.

A common master-worker model of workload distribution

may lead to load imbalance. Research work in this paper

demonstrated that non-blocking communication operations

can be used to implement latency tolerance techniques by

overlapping communication with computation. Furthermore,

an extensive set of experimental studies also showed that load

balancing can be achieved by dividing the workload almost

evenly between the master and the worker processes.

There are several possible future works to further improve the

efficiency of parallel motif discoveries. First, decentralization

of task scheduler may help alleviating a bottleneck on the

centralized master processor core in the current design and

implementation. Tree-based structures such as binary tree and

binomial spanning tree can be adopted for this purpose as

shown in the implementation of a decentralized barrier

synchronization operation [16].

Second, given that the runtime of parallel motif discovery

program can span days, a checkpoint/restart support is

beneficial since it reduces the cost and time for re-

computation should a failure (or failures) occurred. Past

research work has shown that checkpoint creation library such

as BLCR can be deployed for this purpose and Pin-based tool

can be developed to reduce its overhead further [17].

Finally, with an increasing number of processor cores in each

computing node, a design and implementation of parallel

motif discovery program utilizing both multithreading and

message-passing operations should be explored to reduce the

cost of memory consumption and the amount of data transfer

between processes residing on different cores within the same

computing node. The current approach only utilizes message-

passing operations, and therefore, data transfer is invoked

even when both the sender and receiver are locating on the

same computing node.

6. ACKNOWLEDGMENTS
The author thanks Texas Advanced Computing Center’s

technical support staffs for providing a superb platform for

this work. This research is supported in part by computing

resources from the NSF XSEDE Startup Allocation Award.

7. REFERENCES
[1] P. D’haeseleer, “What are DNA sequence motifs?”

Nature Biotechnology, vol. 24, pp. 423-425, 2006.

[2] P. A. Pevzner and S.-H. Sze, “Combinatorial approaches

to finding subtle signals in DNA sequences,” In

Proceedings of the 8th Int’l Conference on Intelligent

Systems for Molecular Biology, pp. 269-278, 2000.

[3] M. K. Das and H. K. Dai, “A survey of DNA motif

finding algorithms,” BMC Bioinformatics, vol. 8, 2007.

[4] M. Nicolae and S. Rajasekaran, “qPMS9: An efficient

algorithm for quorum planted motif search,” Nature

Scientific Reports, vol. 5, 2015.

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.13, August 2015

33

[5] S. Rajasekaran, S. Balla, and C.-H. Huang, “Exact

algorithms for planted motif problems,” Journal of

Computational Biology, 12(8), pp. 1117-1128, 2005.

[6] J. Davila, S. Balla, and S. Rajasekaran, “Fast and

practical algorithms for planted (l,d) motif search,” IEEE

Transactions on Computational Biology and

Bioinformatics, vol. 4, no. 4., pp. 544-552, 2007.

[7] S. Rajasekaran and H. Dinh, “A speedup technique for

(l,d)-motif finding algorithms,” BMC Research Notes,

4:54, 2011.

[8] Q. Yu, H. Huo, Y. Zhang, and H. Guo, “PairMotif: A

new pattern-driven algorithm for planted (l,d) DNA

motif search,” PLoS ONE, 7(10):e48442, 2012.

[9] S. Bandyopadhyay, S. Sahni, and S. Rajasekaran,

“PMS6: A fast algorithm for motif discovery,” In

Proceedings of the 2nd IEEE International Conference on

Computational Advances in Bio and Medical Sciences,

pp. 1-6, 2012.

[10] M. Nicolae and S. Rajasekaran, “Efficient sequential and

parallel algorithms for planted motif search,” BMC

Bioinformatics, 15:34, 2014.

[11] S. Sarkar, G. R. Kulkarni, P. P. Pande, and A.

Kalyanaraman, “Network-on-chip hardware accelerators

for biological sequence alignment,” IEEE Transactions

on Computers, vol. 59, no. 1, pp. 29-41, 2010.

[12] A. Boukerche, J. M. Correa, A. Melo, and R. P. Jacobi,

“A hardware accelerator for the fast retrieval of

DIALIGN biological sequence alignments in linear

space,” IEEE Transactions on Computers, vol. 59, no. 6,

pp. 808-821, 2010.

[13] C. B. Olson, M. Kim, C. Clauson, B. Kogon, C. Ebeling,

S. Hauck, and W. L. Ruzzo, “Hardware acceleration of

short read mapping,” In Proceedings of the 20th IEEE

Annual Int’l Symposium on Field-Programmable

Custom Computing Machines, pp. 161-168, 2012.

[14] Y. Chen, B. Schmidt, and D. L. Maskell, “A hybrid short

read mapping accelerator,” BMC Bioinformatics, 14:67,

2013.

[15] J. Arram, K. H. Tsoi, W. Luk, and P. Jiang,

“Reconfigurable acceleration of short read mapping,” In

Proceedings of the 21st IEEE Annual International

Symposium on Field-Programmable Custom Computing

Machines (FCCM), pp. 210-217, 2013.

[16] N.-F. Tzeng and A. Kongmunvattana, “Distributed

shared memory systems with improved barrier

synchronization and data transfer,” In Proceedings of the

11th ACM International Conference on Supercomputing

(ICS), pp. 148-155, 1997.

[17] J. Cornwell and A. Kongmunvattana, “Advanced I/O

techniques for efficient and highly available process

crash recovery protocols,” GSTF Journal on Computing,

vol. 1, no. 3, 2011.

8. APPENDIX

Fig 11: Runtime plot under different value of parameter x

Fig 12: Speedup plot under different value of parameter x

International Journal of Computer Applications (0975 – 8887)

Volume 124 – No.13, August 2015

34

Fig 13: Runtime plot under different number of processor cores (p)

Fig 14: Speedup plot under different number of processor cores (p)

IJCATM : www.ijcaonline.org

