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ABSTRACT 
This paper describe the technique of shadow detection 

properly, this technique can detect both the cast and self-

shadow. The method exploits local color constancy properties 

which are cause of reflectance suppression in excess of 

shadowed regions. For detecting shadowed areas in a scene, 

the values of the backdrop image are separated by values of 

the current frame in the true color (RGB) space. We use all 

three type of colour space in our work. Illumination map is 

extracted using a steerable filter framework based on global, 

local correlations in low and high frequency bands 

respectively. The lighting and colour features so extracted are 

then input to a decision trees are designed to detect shadow 

edges using AdaBoost. The simulation results give us an idea 

about the performance of the proposed method as good with 

boundary marking on shadow and nonshadow region with 

high accuracy. 

Keywords 
Shadow detection, Amplitude Modulation & Luminance 

Modulation, Colour Feature segmentation and Feature 
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1. INTRODUCTION 
Shadow is named as a region which created due 
obstruction of light source or rays Shadows in images are 

typically affected by a number of phenomena in any type of 

scene, which includes physical phenomena like; lighting 

conditions, manners of shadowed surfaces, objects, etc. The 

region, where the direct light source is completely blocked is 

called the umbra; on the other side the region, where it is 

partially blocked is known as the penumbra [1].At the time 

light sources are colorless and there is no color merging   

among objects, This type of shadow is often known as 

achromatic shadow, and those that are not achromatic is 

referred to as chromatic shadows. These techniques are 

portioned in the form of model-based and property-based 

techniques. Model-based techniques are explain by geometry 

of the scene, the illumination or the acquisition system.[1]. 

Our proposed method is a selective, loom on the basic of 

region which exploits the properties of the color constancy 

field, which comes in world over shadowed regions since of 

the effect of reflectance suppression. Local Color Constancy 

Detection method kind of color modal is used which 

compares intensity with respect to the chromaticity of each 

pixel. Lately data driven approaches are derived proposed for 

single image detection. This method learns to detect shadow 

based on training images. Zhu et al. classify region based on 

illumination intensity, texture and odd order derivatives for 

shadow region CRF (Condition Random Filed) optimization. 

CRF-based optimization is provides rational shadow contours. 

A shadow occurs when an object partially or totally occludes 

straight light from a light source, which is an ever-present 

aspect of our visual experience [1]. Shadows in images have 

long been troublemaking to computer vision problems, like 

tracking, recognition, object segmentation and many more. In 

practice, shadows cause problems such as shape alteration, 

thing merging and failure of object recognition and 

segmentation. Shadows are having double-face effect on 

scene understanding, depending on whether we model the 

shadows or ignore them. Generally, the region where a direct 

light source is entirely blocked is called the umbra, whereas 

the region where the region is incompletely blocked is known 

as the penumbra. Noticeably, both of them occur by a change 

of illumination. This illumination change is often measured 

only as a decline in brightness, without major change in 

chromaticity. However, the assumption only works when the 

light sources are white and there is no colour blending among 

objects. This category of shadow is habitually called an 

achromatic shadow, whereas those that are not achromatic are 

referred to as chromatic shadows [2]. For some conditions, a 

shadow is really a local change in both the colour and 

intensity of the scene illumination [3]. Estimating the colour 

of existing scene’s lighting cause a problem which has taken 

much attention [4–7].Computing colour constancy is an ill-

posed problem [8,9]. Often, these colour constancy algorithms 

are derived under some restrictive conditions or assumptions. 

Removing mono or di- color Shadows (chromatic) is also a 

particularly challenging task because of the fact that they are 

extremely difficult to distinguish from the foreground which 

has undefined pattern. Amato et al. [2] proposed to use the 

luminance ratio to identify segments with low gradient 

constancy, which in turn distinguish shadows from forefront. 

This algorithm achieved state of the art results on tricky video 

conditions. Huang and Chen [10] use a Gaussian mixture 

model (GMM) to learn colour features that are robust to the 

changes of surroundings surfaces or illuminant colour in a 

scene. Shadow region detection using the condition random 

field model Shadow regions and non-shadow regions differ 

with respect to illuminant intensity, texture, colour 

appearance. The rest of the paper is summarized as follows. 

The section II covers the outline of the algorithm; section III 

explains the colour segmentation and feature extraction. The 

section IV experimental result and the section V conclude the 

paper.  

2. OUTLINE OF ALGORITHM 
In this paper, intensity features from illumination maps and 

colour features from original images are combined to address 

the problem of shadow detection. The benefit of adding 

illumination features is that luminance changes due to changes 

in albedo will have already been removed from such maps. 

Thus this map offers robust features for detecting shadow 

regions. However, the approach of Lalonde et al. provide only 

extracted colour ratio and texture features from an image to 

use as inputs to a supervised learning method. The structure of 

our approach is captured in Figs 1 and 2. The upper lane 

corresponds broadly to the approach of Lalonde et al. without 

their texture features. At the stage trained the decision tree 

(Decision Tree 1) produces an initial shadow edge map. We 

use this to help improve the illumination map estimation 

process which is itself an improved version of the algorithm 

of Jiang et al., and is the lower path in Fig. 1. The illumination 

estimation process is exposed in Fig. 2. We give the 

impression of being up on Jiang et al.’s intrinsic image 

extraction framework [7] in order to obtain more accurate 

illumination maps in higher frequency bands.  
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Figure 1: A flow chart giving a high level overview of our proposed algorithm. 

 

 
Figure 2: A flow chart giving detail on the improved approach for estimating the illumination map. This corresponds to the 

first two stages of the bottom row in Fig. 1. LM’ is calculated directly from unrecompensed image. H and L refer to the 

outputs of steerable filters in High and Low frequency bands respectively. The SFD gives response up to 8 frequency and 8 

orientation bands. 
 

The Jiang et al. look for global correlations in between AM 

(Amplitude Modulation or local luminance contrast) and LM 

(Luminance Modulation or average local luminance) to note 

down  divergence between the amount of reflectance changes 

(where AM and LM are uncorrelated); illumination changes 

(where AM and LM are correlated). This global strategy 

response is good in case for low frequencies, In case when 

apply this high frequency changes. We that's why estimate 

local correlations of LM and AM, and also individually 

between LM and colour features. Both these help us to 

separate high-frequency filter responses, at a local level, for 

later re-enactment into illumination or reflectance maps. For 

lower-frequency bands, global correlation in between 

luminance and contrast in each band still determines the 

corresponding weights for reconstruction [7]. Has an 

enhanced version of the separation of intrinsic images in 

lower alleyway, we then educe features from the illumination 

map. Using these illumination ratio features and the colour 

features extracted in the upper pathway, a second decision tree 

(also trained using AdaBoost) produces an improved estimate 

of the shadow edge probability map. This more effectively 

discriminates shadow edges from reflectance edges. This 
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revised shadow edge probability map can then be improved 

further using a Conditional Random Field model with 

constraints that edges should be continuous and that 

neighboring pixels should have the same state. 

3.  COLOUR SEGMENTATION AND 

FEATURE EXTRACTION 
We now describe the colour segmentation and feature 

extraction method. Colour features are used to assist the 

recognition for shadows straightly, and to get better value of 

illumination maps formed by the steerable filter method. We 

initially produce a colour segmentation using the mean shift 

algorithm [4] in (RGB) true color model. The edges of the 

same colour region will be labelled as shadow or non-shadow 

edges as shown later. Having indomitable the locations of 

colour edges we extract colour ratios (CR) across edges. The 

ratio is between the minimum and maximum values in 

different colour channels across a periphery [11]. Shadow 

edges are due to illumination changes so illumination ratio for 

regions either side of shadow boundaries should be the alike 

everywhere in the image, hence hue should be roughly stable 

across shadow boundaries. Non-shadow edges will not be so 

constrained. It is uncertain which colour space is the best to 

estimate these ratios, accordingly we estimate colour ratios in 

3kind of spaces (RGB, HSV and LAB) and at 4 different 

scales. In entire, come across out a 36-dimensional vector for 

every edge pixel in the image. Following Lalonde et al., we 

then use an AdaBoost-based decision tree, trained on a set of 

labeled images, to classify boundaries as shadow or non-

shadow (see Section 5). This decision tree gives the 

probability that each edge pixel found by the mean shift 

algorithm is a shadow edge. The result of applying the 

decision tree is the initial shadow edge probability map which 

is used as input to the illumination map estimation process (by 

helping to separate reflectance and illumination changes, see 

Section 3). The colour features at current stage are also input 

openly into the final shadow detection process along with the 

illumination features.  Intensity values in natural images or 

scene are the product of reflectance and illumination, and do 

not always represent the intrinsic features of the panorama, 

like the illumination profile, surface orientation/surface 

colors. It can be advantageous to separate illumination 

changes from reflectance changes: a type of intrinsic image 

extraction. Jiang et al. [7] estimated a kind of filter (steerable 

filter) based framework for calculating the values of the 

correlation between luminance and local contrast, colour 

texture at each frequency and orientation band, and it after it 

is followed by used the ensuing correlation coefficients to 

derive weights for each component of steerable filter output in 

order to reconstruct the illumination and reflectance maps. 

Because of its global nature, this method works well on low 

but not for high-frequency bands since the source and so 

appropriate categorization of high frequency components 

tends to vary athwart the image. Thus, we proposed to 

calculate local correlations in each band and apply these 

correlations to derive local rather than global weights. At the 

end of this section we show how if we calculate both local and 

global correlations we can determine the frequency band at 

which to shift from one to another, we refer for a hybrid 

correlation method. 

1.1 Local correlation between LM and AM 
When illumination changes falls across a visual texture the 

luminance difference (amplitude, absolute contrast) between 

the light and dark parts of the texture also varies with the 

illumination. This is the positive correlation among 

illumination and local amplitude use to spot the shadow limits 

[18]. Presume a images are being decomposes in the number 

of frequency and orientation bands      ( i = 1; :::;N; j = 1; 

::;M) where N is the number of frequency bands and M the 

number of orientation bands. Modulations of local amplitude 

(AM) can be represented as the envelope of the high 

frequency components in Iij. Intended to u put in  practice, we 

can be extract low frequency information from the amplitude 

of the high frequency components in the original image, i.e.    

(abs (    )), where Fl is a low-frequency filter. In the same 

way, local luminance modulation (LM) can be straight 

extracted via low-frequency filtering, i.e       If we have 

already segmented the image into regions based on colour 

(e.g. Fig.4(b)) we need only examine correlations between 

LM and AM in local regions on either side of colour edges. 

Let us indicate the set of colour perimeter pixels in the colour 

segmentation to be D =   
          so that    indexes a point 

in any the original image I, or any of the filter output      . 

Colour is consisting of both luminance and hue, and hence 

colour boundary pixels will be a superset of the shadow edge 

pixels. As a outcome we could do with only inspect the 

regions around these colour boundaries to find the shadow 

edges. If the correlation among LM and AM is strong, then at 

second step we ration the associated edge components for 

illumination map, or else for reflectance map. The local 

correlation – for a pixel    – between AM and LM for the 

   frequency band and the      orientation band is denoted by 

    
      and is defined as 

    
             

                
                     (1) 

Where     
      = 0 for any pixel p =2 D, cor         ] 

calculates correlation of two components   and   , and   
   (:) 

is the production of the filter something like edge pixel dk. To 

analyze the local correlations we have to be cautious for 

selecting the suitable region in input image. Therefore if AM 

is calculated in a local window including these edge pixels the 

correlation with LM will compromised. In observation, the 

values of LM and AM in regions adjoining to every edge are 

the actual concern. 

1.2 Illumination Map Refining 
As described in Section 2, a decision tree based classifier is 

use for estimating the probability of a luminance edge being a 

shadow edge on the basis of colour features. We represent this 

probability as         for the boundary pixel dk. And now 

we have to bring into being a reconstructed illumination map 

based on the local correlation and it is the initial shadow edge 

map. The weights of each one component in this 

reconstruction are different for each edge pixel. We denote 

these weights     
       where l refers to the fact that the 

reconstruction is partly based on the local correlation (as 

opposed to the global correlation) just put it is the addition of 

   (dk) and the local correlation     
       for each edge 

pixel   , 

    
                 

          

 (2) 
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Figure 3: Intermediate results. (a) original image. (b) 

Segmentation result. (c) initial shadow edge map. (d) final 

shadow edge map. (e) illumination map (IM) 

reconstructed with global correlation. (f) IM from local 

correlation.  

By instinct, the Decision Tree 1 based on colour features point 

toward that, for a shadow edge, we should deal out the edge to 

the illumination map instead of reflectance.     
         for 

any pixel p =2 D. 

1.3 Hybrid correlation 
As the value of frequency is about to increase the steerable 

filter decomposes fine details of the image, and are dominated 

by local features. Consequently a local correlation policy is 

well again for the high frequency bands in comparison of the 

global strategy which is improved for lower frequency 

components. In our hybrid strategy we therefore merge the 

local and global strategies proceeding for reconstructing the 

reflectance and illumination maps. Reconstruction of the 

illumination map proceeds as follows: 

            
 

               
       

   
   
       

(3) 

   
 

 Is the global correlation, and T is threshold frequency 

above which the local correlation strategy is applied (note: big  

i = high frequency filter). T is determined from the energy 

distribution of the global correlation measure    
 

as follows, 

          
     

  
   

 
   

     
  

   
 
     

      

(4) 

Where  is representing the threshold energy. We set l = 0:9 

in this paper. Fig.4 (e-g) shows exemplar reconstructed 

illumination maps using global, local and hybrid correlations. 

The hybrid method characterizes the shadow best, retaining its 

edges and intensity. 

1.4 Shadow detection 
We now combine the colour features described in Section 2 

and illumination information into a new shadow edge 

classifier trained on features from both of sources. The first 

step of our work is to estimate intensity ratios in the 

illumination map from regions on either side of colour 

boundaries. As with colour ratios we compute the intensity 

ratios at 4 dissimilar scales. Taken with the colour features, it 

gives a 40-dimensional feature vector for every boundary 

pixel recognized by the mean shift method. We skilled a new 

decision tree (Decision tree 2 in Fig 1) for classifying pixels 

as shadow or non-shadow. The decision tree gives the 

probability value      of each pixel being on a shadow 

boundary. To further refine the resulting classifications, we 

introduce conditional random field (CRF) model [9, 21] built 

with the constraint that edges should be continuous. The full 

cost function can be written as:  

                                     

 (5) 

where     the data cost is             ; the smoothing cost 

is              ;  and l controls the balance between these two 

items. For the data cost, the penalty for labeling a pixel 

shadow or non shadow will be                  In 

order to reduce the influence of this prior, a regularization 

term is added, as a result that             ; is written as 

           

 
                                    

                                            
  

 (6) 

The constraint function,                evaluates; the cost of 

giving label      to point Pi, and label     to point   , where    
and    are adjacent to each other. If they belong to the 

identical colour edging, and have similar features, then they 

should have the same label. Otherwise, setting same labels 

should be penalized. Function Fs is defined as 

                      
    

   
    (7) 

Where 1(:) is the indicator function;     is the colour ratio 

feature in HSV and LAB space of points Pi. The optimal label 

can be found through minimizing the whole cost function i.e. 

min E by means of the graph cut algorithm [9, 21]. 

4. EXPERIMENTAL RESULTS 
Maximum of the algorithms tried were evaluated against the 

labeled dataset from which comprised mainly outdoor images 

including natural views, street views and satellite resultant 

images. Some shadow is comes into the view due to natural 

objects, like plants, mountains and stones, and some by man-

made objects, such as buildings, cars, and lamp posts. We 

therefore tested our algorithm on the decisive factor, and on 

the supplementary difficult problem of general shadow edge 

detection. The Colour and illumination features balance each 
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other, and as a result edge pixels are classified as shadows at 

the one condition hue is pretty constant across the edge and 

the change in illumination is consistent with the difference 

between sun and ambient lighting. Finally, adding the CRF 

model increased classification performance to 83:5% correct 

rates. In this work we in step a false alarm rate by varying the 

regularization term pc in the CRF. The other parameters were 

selected as l = 0:5; b= 4 through cross-validation. In 

Comparison to shadow detection results based on colour 

features, the anticipated algorithm can remove the false 

alarms and amplify the possibility of true positives as well. 

The detection performance visually shown in figure 4 and 

comparatively in figure 5 the 

 
Figure 4: Shadow detection results. (a) Original Image (b) 

colour based shadow detection (c) Shadow detection based 

on colour and illumination. (c) shadow detection based on 

CFR. 

 

Fig.5 Graph for ground image 

5. CONCLUSION 
In the projected shadow recognition algorithm, features from 

illumination map, colour segmentation domino effect is 

combined as inputs to a decision tree trained to detect shadow 

limits (edges). A hybrid correlation strategy is proposed to for 

selecting filter responses for reconstructing the illumination 

maps. The proposed algorithm is moderately exact, 

outperforming one more kind of current methods. It is setting 

up to use shadow detection results to further refine intrinsic 

image taking out methods in an iterative fashion.  
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