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ABSTRACT 
The paper stochastically investigates a two unit cold-standby 

system with a server subject to failure and getting delayed 

treatment thereafter. Semi-Markov process is used to develop 

the system model. The model is analyzed at different 

regeneration points using regenerative-point technique. The 

steady-state expressions are derived for various system 

performance measures such as mean time to failure, 

availability, busy period of server, expected number of 

treatments, profit etc. Finally, numerical examples are given 

to discuss the effect of various parameters on system 

performance measures.  
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1. INTRODUCTION 
The cold-standby redundancy is widely used by researchers to 

develop probabilistic system models [1-5]. The repairable 

standby systems have three basic components; the operative 

units, standby units and the service facility. The instant 

availability for use of all these constituents ensures the system 

reliability. In case of cold-standby system, where the risk of 

failure of standby unit is negligible as compared to that of the 

operative one, the role of service facility/ server becomes 

more accountable for system resumption beside its failure. 

The problem of server failure has been debated by various 

researchers in the literature [6-11] in connection with queuing 

models. Relating to system reliability studies the topic 

remained concealed for a long time. Recently, few researchers 

[12-13] discussed the problem of server failure for single unit 

reliability models. The same problem is generalized with 

standby reliability models in [14-17].  

As far as reliability models with server failure are concerned, 

the researchers who developed standby systems models 

focused on instant server treatment at its failure. However, in 

many cases the failed server takes some time to be placed 

under treatment either due to surveillance failure, 

communication delays, heavy traffic load or transportation 

problem etc. The present study investigates a stochastic model 

for a cold-standby system of two identical units and a service 

facility, called server. The system starts operating with one 

unit in operation and other as cold-standby. The standby unit 

directly switches into operation as and when the operative unit 

fails and the latter is then taken for repair by the server. If the 

server fails during work it moves under treatment with some 

elapsed time. All the switches are instantaneous and perfect. 

The unit and the server work as new after each repair and 

treatment respectively. All the random variables describing 

the model are statistically independent and uncorrelated. The 

failure time of unit, repair time of unit, waiting time for 

treatment and treatment time of server follow general 

probability distribution with different density functions. The 

study uses semi-Markov theory [18] to develop the system 

model and investigates the model at different re-generation 

points using re-generative point technique of renewal theory 

[19]. It derives expressions for system performance measures 

such as mean time to failure, availability, busy period, 

expected number of repairs and treatments and the profit 

incurred to the system. Finally, a particular case is discussed 

for illustrating the results and introducing simulation study.                       

2. NOTATIONS 

EE /  : Set of regenerative states/non regenerative states. 

O  : The unit is operative and in normal mode. 

Rr FWFW /  : Failed unit waiting for repair/ continuously from    

previous state. 

SG   : The server is good. 

Rr FUFU /    : Failed unit under repair/ continuously from 

previous state. 

Tt SFUSFU / : Failed server waiting for treatment/ 

continuously from previous state. 

Tt SFWSFW / : Failed server under treatment/ continuously 

from previous state. 

)(/)( tZtz    : pdf/ cdf of failure time of the unit. 

)(/)( tUtu   : pdf / cdf of failure time of the server.  

)(/)( tGtg  : pdf / cdf of repair time of the failed unit. 

)(/)( tHth  : pdf / cdf of the treatment time of the server. 

)(/)( tKtk  : pdf / cdf of the waiting time of the server for 

treatment. 

)(/)( ,, tQtq jiji : pdf / cdf of direct transition time from a 

regenerative state i to a regenerative state j without visiting 

any other regenerative state. 

)(/)( .,., tQtq kjikji  : pdf / cdf of first passage time from a 

regenerative state i to a regenerative state  j or to a failed state 

j visiting state k once in (0,t]. 

)(/)( ,.,,., tQtq rkjirkji   : pdf / cdf of first passage time from 

regenerative state i to a regenerative state j or to a failed state j 

visiting state k, r once in (0,t]. 

)(/)( ,,.,,,., tQtq srkjisrkji : pdf / cdf of first passage time from 

regenerative state i to a regenerative state j or to a failed state j 

visiting state k, r and s once in (0,t]. 

)(tM i  : Probability that the system is up initially in state Si 

  E is up at time t without visiting to any other regenerative 

state. 

)(tWi  : Probability that the server is busy in the state Si up to 

time ‘t’ without making any transition to any other 

regenerative state or returning to the same state via one or 

more non-regenerative states. 
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jim ,    : Contribution to mean sojourn time (µi) in state Si when 

system transit directly to state j.  

)/()( cs  : Stieltjes convolution / Laplace convolution. 

/*~    : Laplace Stieltjes Transform (LST) / Laplace 

Transform (LT). 

 

The following are the possible states of the system model 

The regenerative states )(E :  

),,(),,,(),,( 210 trr SFWOFWSSGOFUSCSOS   

Non-regenerative states: 

),,,(),,,( 43 TrRtR SFWFWFWSSFUOFWS 
 

),,,(),,,( 65 TrRrR SFUFWFWSSGFWFUS 
 
),,,(),,,( 87 tRRtRr SFUFWFWSSFWFWFWS   

),,(9 SGFWFUS Rr
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1: System State Transition Diagram 

 

 

3. THE MODEL ANALYSIS 

3.1 Transition Probabilities  
Simple probabilistic considerations [20-21], yields the 

following expressions for the non- zero elements 
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0


 dttqQp ijijij  
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,)()()( 1,99,66,33,2)8,7,9(,6,3.1,2
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,)()()( 1,99,88,44,2)7,9,8(,4.1,2

pcpcpcpp n 

 
 


0 0
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0
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For these Transition Probabilities, it can be verified that  

 5.1,12,10,15,12,10,11,0 ppppppp
 

 nn ppppp
)8,7,9(,6,3.1,23.1,24,23,2)9,8,7(,5.1,1

 

 9,67,51,58,46,31,3)7,9,8(,4.1,2
ppppppp n

 
17,91,99,88,7  pppp

 
3.2 Mean Sojourn Times 
The Mean sojourn time µi in state Si are given by: 

)2(                 )()(
0


 dttTPtEi  





0

2
0

1
0

0 )()(,)()()(,)( dttZtKdttGtUtZdttZ   

The unconditional mean time taken by the system to transit 

from any state Si when time is counted from epoch at entrance 

into state Sj is stated as: 

  )0()( *'
ijijij qttdQm

 
 2,10,115,12,10,101,0 ,, mmmmmm 

 
,, 24,23,2

'
1)9,8,7(,5.1,15.1,1   mmmm n

 

,'
2)7,9,8(,4.1,2)8,7,9(,6,3.1,23.1,2  nn mmm

 
,,, 57,51,548,436,31,3   mmmmm

 

97,91,989,878,769,6 ,,,   mmmmm  

3.3 Mean Time To System Failure 
Let )(ti  be the c.d.f of the first passage time from 

regenerative state Si to a failed state. Regarding the failed 

state as absorbing state, the following recursive relations are 

obtained for )(ti : 
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 
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(3) 

Taking LST of equation (3) and solving for )(
~

0 s , the MTSF 

is given as follows: 
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The reliability R(t) is given by 
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4. COST-BENEFIT ANALYSIS 

4.1.    Steady State Availability 
Let )(tAi be the probability that the system is in up-state at an 

instant ‘t’ given that the system entered regenerative state Si at 

t=0. The recursive relations for )(tAi   are as follows: 

 )({)()()( .,......,, tqtqtMtA kji

j

kljijiii                

             (4)    2,1,0);()(........})(.,  itActq jklji  

 Let us define 






otherwise                                                      ;0

 .…lk,  viaj  toi state fromn  transitiois  thereif;1
...., klji

)(tM i is the probability that the system is up initially in state 

ESi   is up at time t without visiting to any other 

regenerative state, so that 


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0
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



0
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Taking LT of equation (4) and solving for )(*
0 sA , the steady 

state availability is given by 

2,1
'
2

'
10,10

2,1210,10*
0

0
0 )(lim)(
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ssAA

s 




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


            

4.2. The Server’s Busy Period  
Let )(tBi   be the probability that the server is busy in repair of 

the unit at an instant t given that the system entered 

regenerative state Si at t = 0. The recursive relations for )(tBi  

are as follows: 

)({)({)()( .,.........,,,, tqtqtWtB kjilkjiji

i

ii    

         2,1,0);()(........})(.,  itBctq jklji       (5)

 )(tWi be the probability that the server is busy in state Si due 

to repair of the unit up to time ‘t’ without making any 

transition to any other regenerative state or returning to the 

same via one or more non-regenerative state and so 

 )()1))(()()(()()()(2 tGctGtUtztGtUtZW                                 

         )()1))(()())(()()(( tKctGtuctGtUtz  

         )()1))(())(()())(()()(( tHctkctGtuctGtUtz  

          
)()1))(())(())(()())(()()(( tGcthctkctGtuctGtUtz  

Taking LT, of equation (5) and solving for )(*
0 sB , the time for 

which server is busy due to repair of unit is given by 

2,1
'
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10,10

*
1*

0
0

0

)0(
)(lim
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W
ssBB
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
  

4.3 Expected Number Of Repairs  
Let )(tDi   be the expected number of repairs of the unit in 

(0,t] given that the system entered regenerative state Si at t=0. 

The recursive relations for )(tDi  are as follow: 

 

j

kjikljijii tQtQtD )({)()( .,.........,,   

             2,1,0)};(){(.......})(.,  itDstQ jjklji  (6)

 
Using LT, of equation (6) and solving for )(0

~

sD , the 

expected number of repair of the unit are given by 
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4.4 Expected Number Of Treatments  
Let )(tTi   be the expected number of treatments given to the 

server in (0,t] given that the system entered regenerative state 

Si at t=0. The recursive relations for )(tTi  are as follow: 

 

j

kjikljijii tQtQtT )({)()( .,......,, 
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Using LT, of equation (7) and solving for )(

~

0 sT , the expected 

number of the treatments given to the server are given by 
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5. COST ANALYSIS 
Let Xi (t) denote the measure of ith characteristic of the system 

in (0, t] and iC be its coefficient then the profit incurred to the 

system model in (0,t] is given by 

(8)           )()()(
3

1
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 busy. isserver for which  unit timeper Cost 1 C
 
  uint.  theofrepair  for the unit timeper Cost 2 C

 
atment.server tre for the unit timeper Cost 3 C

 
defined.already  are   ,,,  0000 TDBAand   

 

6. SIMULATION STUDY  
Without loss of generality, just for the sake of convenience, 

let us suppose all the random variables follow exponential 

distribution i.e. 

,)(,)(,)( ttt etuetgetz      

tt ethetk     )(,)(  

Substituting these values in equations [1-7], the following 

results are obtained: 
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The results are shown in the table 1 & 2 for numerical 

simulation assigning the following set of presumed values to 

various parameters: 

  

 ,3.0 ,008.0     

,08.0 ,02.0    

900C ,300

,500C ,20000K

32

10





C
 

 

 

Tables1 effect of   and on system performance w.r.t server treatment rate   ( 0.02 ,008.0   ) 

 

Performance 

Index 
  

08.0

3.0








 

08.0

4.0








 

09.0

3.0








 

 

 

MTSF 

0.01 2345.09 3043.454 2357.225 

0.02 2747.837 3580.45 2770.082 

0.03 2998.072 3914.095 3027.888 

0.04 3168.632 4141.509 3204.18 

0.05 3292.345 4306.46 3332.34 
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Availability 

0.01 0.945862 0.959394 0.946001 

0.02 0.971519 0.978844 0.971672 

0.03 0.980342 0.98548 0.980498 

0.04 0.984802 0.988825 0.98496 

0.05 0.987492 0.99084 0.987651 

     

 

 

Profit 

0.01 18901.74 19175.57 18904.51 

0.02 19414.73 19564.46 19417.78 

0.03 19591.11 19697.14 19594.24 

0.04 19680.27 19764.01 19683.42 

0.05 19734.06 19804.3 19737.23 

 

 

Table 2 effect of   and on system performance w.r.t server treatment rate   ( 0.08 ,3.0   ) 

 

Performance 

Index 
  

02.0

008.0








 

02.0

009.0








 

04.0

008.0








 

 

 

MTSF 

0.01 2345.09 1928.287 1599.019 

0.02 2747.837 2230.048 1952.535 

0.03 2998.072 2419.378 2193.824 

0.04 3168.632 2549.243 2369.007 

0.05 3292.345 2643.857 2501.977 

     

 

 

Availability 

0.01 0.945862 0.939205 0.895309 

0.02 0.971519 0.9678 0.944193 

0.03 0.980342 0.977682 0.961472 

0.04 0.984802 0.982687 0.970286 

0.05 0.987492 0.98571 0.975628 

     

 

 

Profit 

0.01 18901.74 18766.76 17890.84 

0.02 19414.73 19338.46 18868.16 

0.03 19591.11 19536.02 19213.58 

0.04 19680.27 19636.07 19389.79 

0.05 19734.06 19696.5 19496.56 

 

7. EXAMPLE 
For illustration a cold standby system is considered with 

values for different parameters as taken previously in the 

simulation study with ,09.0 and following results are 

obtained for different measures of system performance: 

 

MTSF=3567.876  

Availability=0.9911 

Busy period due to repair =0.026124 

Expected number of repairs=0.007976 

Expected number of treatments of the server =0.000428 

System profit=19830.21 

8. DISCUSSION ON RESULTS 
Table1 shows the effect of   and  on different measures of 

system performance, for fixed values of   and . It indicates 

how MTSF, availability and profit rise with increasing   . It 

reveals that the system performance improves considerably 

with increasing treatment rate of the server. For constant 

values of all other parameters, as  increases from 0.3 to 0.4 

all the system performance measures exhibit uprising trends.  

It means the higher the repair rate of unit better is the system 

performance. The similar trend occurs for increasing  from 

0.08 to 0.09, though slower than that of . The effect of   

and   on system performance w.r.t server treatment rate   

for fixed levels of    &  , is shown in table 2. The system 

performance declines with increasing values of both of these 

parameters, for all constant set of values of other parameters. 

This trend shows that the failure of both unit as well as that of 

server undesirably affect system performance. Further, the 

effect of   is worse even than that of  . As the server looks 

after the failed unit thus if it fails then both the mean time to 

system failure as well as availability and hence the profit 

declines. 

9. CONCLUDING REMARKS 
This paper develops a probabilistic model of a cold standby 

system with the possibility of server failure getting delayed 

treatment thereafter. The operative unit, cold standby unit, 

state of server, failure of unit, failure of server, repair of unit 

and treatment of server are the key concerns of the model. It 

uses the semi-Markov approach of stochastic processes to 

build the model and identifies different renewal-points for 

deriving and analyzing the expressions for transition 

probabilities and system performance measures. The 

simulation results obtained for a particular case highlight the 

importance of study. The results may facilitate the reliability 

practitioners to understand and improve better system designs.            
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